基于人工神经网络的矢量控制感应电机驱动效率优化

E. S. Abdin, G.A. Ghoneem, H. Diab, S. A. Deraz
{"title":"基于人工神经网络的矢量控制感应电机驱动效率优化","authors":"E. S. Abdin, G.A. Ghoneem, H. Diab, S. A. Deraz","doi":"10.1109/IECON.2003.1280646","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for efficiency optimization of a vector controlled induction motor drive. The optimum flux-producing current is obtained using an artificial neural network. The artificial neural network model is established using Matlab/Simulink and based on the load torque and speed data of an indirect vector-controlled induction motor drive. The change of iron core loss resistance due to flux and frequency variation is taken into consideration. Simulation results of the proposed approach show a significant improvement in energy saving and efficiency optimization.","PeriodicalId":403239,"journal":{"name":"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Efficiency optimization of a vector controlled induction motor drive using an artificial neural network\",\"authors\":\"E. S. Abdin, G.A. Ghoneem, H. Diab, S. A. Deraz\",\"doi\":\"10.1109/IECON.2003.1280646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for efficiency optimization of a vector controlled induction motor drive. The optimum flux-producing current is obtained using an artificial neural network. The artificial neural network model is established using Matlab/Simulink and based on the load torque and speed data of an indirect vector-controlled induction motor drive. The change of iron core loss resistance due to flux and frequency variation is taken into consideration. Simulation results of the proposed approach show a significant improvement in energy saving and efficiency optimization.\",\"PeriodicalId\":403239,\"journal\":{\"name\":\"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2003.1280646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2003.1280646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

提出了一种矢量控制异步电动机驱动效率优化的方法。利用人工神经网络获得了最佳产磁电流。基于间接矢量控制异步电动机的负载转矩和转速数据,利用Matlab/Simulink建立了人工神经网络模型。考虑了磁通和频率变化对铁芯损耗电阻的影响。仿真结果表明,该方法在节能和效率优化方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency optimization of a vector controlled induction motor drive using an artificial neural network
This paper presents an approach for efficiency optimization of a vector controlled induction motor drive. The optimum flux-producing current is obtained using an artificial neural network. The artificial neural network model is established using Matlab/Simulink and based on the load torque and speed data of an indirect vector-controlled induction motor drive. The change of iron core loss resistance due to flux and frequency variation is taken into consideration. Simulation results of the proposed approach show a significant improvement in energy saving and efficiency optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信