用磁通管和等势(FTE)数值解拉普拉斯方程和离子流问题

P. Lawless
{"title":"用磁通管和等势(FTE)数值解拉普拉斯方程和离子流问题","authors":"P. Lawless","doi":"10.1109/IAS.1988.25286","DOIUrl":null,"url":null,"abstract":"The method presented uses finite-difference and current-conservation equations, but applies them on a grid which is continuously adjusted by relaxation to approximate flux tube and equipotential surfaces. The resulting solution then contains the flux lines and equipotential lines explicitly. The primary advantages for using the method are that numerical diffusion of the ions is avoided, and the method is adaptable able to include physical diffusion terms.<<ETX>>","PeriodicalId":274766,"journal":{"name":"Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solutions of Laplace's equations and the ion current problem by the use of flux tubes and equipotentials (FTE)\",\"authors\":\"P. Lawless\",\"doi\":\"10.1109/IAS.1988.25286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method presented uses finite-difference and current-conservation equations, but applies them on a grid which is continuously adjusted by relaxation to approximate flux tube and equipotential surfaces. The resulting solution then contains the flux lines and equipotential lines explicitly. The primary advantages for using the method are that numerical diffusion of the ions is avoided, and the method is adaptable able to include physical diffusion terms.<<ETX>>\",\"PeriodicalId\":274766,\"journal\":{\"name\":\"Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.1988.25286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.1988.25286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该方法使用有限差分方程和电流守恒方程,但将它们应用于一个通过松弛连续调整的网格上,以近似磁通管和等势面。由此得到的解明确地包含通量线和等势线。使用该方法的主要优点是避免了离子的数值扩散,并且该方法可以适应包括物理扩散项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solutions of Laplace's equations and the ion current problem by the use of flux tubes and equipotentials (FTE)
The method presented uses finite-difference and current-conservation equations, but applies them on a grid which is continuously adjusted by relaxation to approximate flux tube and equipotential surfaces. The resulting solution then contains the flux lines and equipotential lines explicitly. The primary advantages for using the method are that numerical diffusion of the ions is avoided, and the method is adaptable able to include physical diffusion terms.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信