{"title":"烟叶、竹子和椰子纤维增强聚酯复合材料压缩性能的水热响应研究","authors":"Obi LE, Uwanugo RG, Uchejiora M","doi":"10.53294/ijfetr.2021.1.1.0045","DOIUrl":null,"url":null,"abstract":"The dearth of construction materials has been the bane of the global construction industry. In a bid to curb this menace, it becomes very imperative to source for construction materials from discarded and least costly materials from raffia, bamboo and coconut fibers. This research investigates the hydrothermal response of plant fiber-reinforced-polyester composites (PFRC). Imperical methods were used to determine the mechanical properties of PFRC (bamboo, raffia and coconut fiber composites), with the usage of Monasanto Tensometer testing machine. All the samples were chemically modified with 12.5g of sodium hydroxide. Numerical and micro-soft excel graphics were used to model compressive responses of the PFRCs. From the analyses, the compressive strengths of raffia, bamboo and coconut composites are 40, 45 and 38MPa respectively.","PeriodicalId":231442,"journal":{"name":"International Journal of Frontiers in Engineering and Technology Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of water and heat response to the compression property of raffia, bamboo and coconut fiber-reinforced-polyester composites\",\"authors\":\"Obi LE, Uwanugo RG, Uchejiora M\",\"doi\":\"10.53294/ijfetr.2021.1.1.0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dearth of construction materials has been the bane of the global construction industry. In a bid to curb this menace, it becomes very imperative to source for construction materials from discarded and least costly materials from raffia, bamboo and coconut fibers. This research investigates the hydrothermal response of plant fiber-reinforced-polyester composites (PFRC). Imperical methods were used to determine the mechanical properties of PFRC (bamboo, raffia and coconut fiber composites), with the usage of Monasanto Tensometer testing machine. All the samples were chemically modified with 12.5g of sodium hydroxide. Numerical and micro-soft excel graphics were used to model compressive responses of the PFRCs. From the analyses, the compressive strengths of raffia, bamboo and coconut composites are 40, 45 and 38MPa respectively.\",\"PeriodicalId\":231442,\"journal\":{\"name\":\"International Journal of Frontiers in Engineering and Technology Research\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Frontiers in Engineering and Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53294/ijfetr.2021.1.1.0045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Frontiers in Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53294/ijfetr.2021.1.1.0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of water and heat response to the compression property of raffia, bamboo and coconut fiber-reinforced-polyester composites
The dearth of construction materials has been the bane of the global construction industry. In a bid to curb this menace, it becomes very imperative to source for construction materials from discarded and least costly materials from raffia, bamboo and coconut fibers. This research investigates the hydrothermal response of plant fiber-reinforced-polyester composites (PFRC). Imperical methods were used to determine the mechanical properties of PFRC (bamboo, raffia and coconut fiber composites), with the usage of Monasanto Tensometer testing machine. All the samples were chemically modified with 12.5g of sodium hydroxide. Numerical and micro-soft excel graphics were used to model compressive responses of the PFRCs. From the analyses, the compressive strengths of raffia, bamboo and coconut composites are 40, 45 and 38MPa respectively.