{"title":"SIFT特征的高效聚类和量化:利用SIFT描述子和感兴趣区域检测器在图像反演下的特性","authors":"Jonathon S. Hare, Sina Samangooei, P. Lewis","doi":"10.1145/1991996.1991998","DOIUrl":null,"url":null,"abstract":"The SIFT keypoint descriptor is a powerful approach to encoding local image description using edge orientation histograms. Through codebook construction via k-means clustering and quantisation of SIFT features we can achieve image retrieval treating images as bags-of-words. Intensity inversion of images results in distinct SIFT features for a single local image patch across the two images. Intensity inversions notwithstanding these two patches are structurally identical. Through careful reordering of the SIFT feature vectors, we can construct the SIFT feature that would have been generated from a non-inverted image patch starting with those extracted from an inverted image patch. Furthermore, through examination of the local feature detection stage, we can estimate whether a given SIFT feature belongs in the space of inverted features, or non-inverted features. Therefore we can consistently separate the space of SIFT features into two distinct subspaces. With this knowledge, we can demonstrate reduced time complexity of codebook construction via clustering by up to a factor of four and also reduce the memory consumption of the clustering algorithms while producing equivalent retrieval results.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Efficient clustering and quantisation of SIFT features: exploiting characteristics of the SIFT descriptor and interest region detectors under image inversion\",\"authors\":\"Jonathon S. Hare, Sina Samangooei, P. Lewis\",\"doi\":\"10.1145/1991996.1991998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SIFT keypoint descriptor is a powerful approach to encoding local image description using edge orientation histograms. Through codebook construction via k-means clustering and quantisation of SIFT features we can achieve image retrieval treating images as bags-of-words. Intensity inversion of images results in distinct SIFT features for a single local image patch across the two images. Intensity inversions notwithstanding these two patches are structurally identical. Through careful reordering of the SIFT feature vectors, we can construct the SIFT feature that would have been generated from a non-inverted image patch starting with those extracted from an inverted image patch. Furthermore, through examination of the local feature detection stage, we can estimate whether a given SIFT feature belongs in the space of inverted features, or non-inverted features. Therefore we can consistently separate the space of SIFT features into two distinct subspaces. With this knowledge, we can demonstrate reduced time complexity of codebook construction via clustering by up to a factor of four and also reduce the memory consumption of the clustering algorithms while producing equivalent retrieval results.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1991998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1991998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient clustering and quantisation of SIFT features: exploiting characteristics of the SIFT descriptor and interest region detectors under image inversion
The SIFT keypoint descriptor is a powerful approach to encoding local image description using edge orientation histograms. Through codebook construction via k-means clustering and quantisation of SIFT features we can achieve image retrieval treating images as bags-of-words. Intensity inversion of images results in distinct SIFT features for a single local image patch across the two images. Intensity inversions notwithstanding these two patches are structurally identical. Through careful reordering of the SIFT feature vectors, we can construct the SIFT feature that would have been generated from a non-inverted image patch starting with those extracted from an inverted image patch. Furthermore, through examination of the local feature detection stage, we can estimate whether a given SIFT feature belongs in the space of inverted features, or non-inverted features. Therefore we can consistently separate the space of SIFT features into two distinct subspaces. With this knowledge, we can demonstrate reduced time complexity of codebook construction via clustering by up to a factor of four and also reduce the memory consumption of the clustering algorithms while producing equivalent retrieval results.