基于概率矩阵分解和邻居模型的协同推荐算法

Hongtao Yu, Lisha Dou, Fuzhi Zhang
{"title":"基于概率矩阵分解和邻居模型的协同推荐算法","authors":"Hongtao Yu, Lisha Dou, Fuzhi Zhang","doi":"10.12733/JICS20105604","DOIUrl":null,"url":null,"abstract":"The existing collaborative recommendation algorithms suffer from lower recommendation precision due to the problem of data sparsity. To solve this problem, we propose a novel collaborative recommendation algorithm which integrates the probabilistic matrix factorization and neighbor models. We first propose a method to calculate the similarity between users or items based on the probabilistic matrix factorization model and construct a natural exponential function to compute the weighted similarity. Then we devise a collaborative recommendation algorithm to make recommendations for the target user, which dynamically adjusts the recommendation results for user- and item-based models by the balance adjustment factor. The experimental results on the MovieLens dataset show that the proposed algorithm outperforms the existing algorithms in terms of prediction accuracy.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Collaborative Recommendation Algorithm Integrating Probabilistic Matrix Factorization and Neighbor Model\",\"authors\":\"Hongtao Yu, Lisha Dou, Fuzhi Zhang\",\"doi\":\"10.12733/JICS20105604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing collaborative recommendation algorithms suffer from lower recommendation precision due to the problem of data sparsity. To solve this problem, we propose a novel collaborative recommendation algorithm which integrates the probabilistic matrix factorization and neighbor models. We first propose a method to calculate the similarity between users or items based on the probabilistic matrix factorization model and construct a natural exponential function to compute the weighted similarity. Then we devise a collaborative recommendation algorithm to make recommendations for the target user, which dynamically adjusts the recommendation results for user- and item-based models by the balance adjustment factor. The experimental results on the MovieLens dataset show that the proposed algorithm outperforms the existing algorithms in terms of prediction accuracy.\",\"PeriodicalId\":213716,\"journal\":{\"name\":\"The Journal of Information and Computational Science\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Information and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12733/JICS20105604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的协同推荐算法由于数据稀疏性问题导致推荐精度较低。为了解决这一问题,我们提出了一种结合概率矩阵分解和邻居模型的新型协同推荐算法。本文首先提出了一种基于概率矩阵分解模型计算用户或物品之间相似度的方法,并构造自然指数函数来计算加权相似度。然后,我们设计了一种协同推荐算法,对目标用户进行推荐,该算法通过平衡调整因子对基于用户和基于商品的模型的推荐结果进行动态调整。在MovieLens数据集上的实验结果表明,该算法在预测精度上优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Collaborative Recommendation Algorithm Integrating Probabilistic Matrix Factorization and Neighbor Model
The existing collaborative recommendation algorithms suffer from lower recommendation precision due to the problem of data sparsity. To solve this problem, we propose a novel collaborative recommendation algorithm which integrates the probabilistic matrix factorization and neighbor models. We first propose a method to calculate the similarity between users or items based on the probabilistic matrix factorization model and construct a natural exponential function to compute the weighted similarity. Then we devise a collaborative recommendation algorithm to make recommendations for the target user, which dynamically adjusts the recommendation results for user- and item-based models by the balance adjustment factor. The experimental results on the MovieLens dataset show that the proposed algorithm outperforms the existing algorithms in terms of prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信