{"title":"基于概率矩阵分解和邻居模型的协同推荐算法","authors":"Hongtao Yu, Lisha Dou, Fuzhi Zhang","doi":"10.12733/JICS20105604","DOIUrl":null,"url":null,"abstract":"The existing collaborative recommendation algorithms suffer from lower recommendation precision due to the problem of data sparsity. To solve this problem, we propose a novel collaborative recommendation algorithm which integrates the probabilistic matrix factorization and neighbor models. We first propose a method to calculate the similarity between users or items based on the probabilistic matrix factorization model and construct a natural exponential function to compute the weighted similarity. Then we devise a collaborative recommendation algorithm to make recommendations for the target user, which dynamically adjusts the recommendation results for user- and item-based models by the balance adjustment factor. The experimental results on the MovieLens dataset show that the proposed algorithm outperforms the existing algorithms in terms of prediction accuracy.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Collaborative Recommendation Algorithm Integrating Probabilistic Matrix Factorization and Neighbor Model\",\"authors\":\"Hongtao Yu, Lisha Dou, Fuzhi Zhang\",\"doi\":\"10.12733/JICS20105604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing collaborative recommendation algorithms suffer from lower recommendation precision due to the problem of data sparsity. To solve this problem, we propose a novel collaborative recommendation algorithm which integrates the probabilistic matrix factorization and neighbor models. We first propose a method to calculate the similarity between users or items based on the probabilistic matrix factorization model and construct a natural exponential function to compute the weighted similarity. Then we devise a collaborative recommendation algorithm to make recommendations for the target user, which dynamically adjusts the recommendation results for user- and item-based models by the balance adjustment factor. The experimental results on the MovieLens dataset show that the proposed algorithm outperforms the existing algorithms in terms of prediction accuracy.\",\"PeriodicalId\":213716,\"journal\":{\"name\":\"The Journal of Information and Computational Science\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Information and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12733/JICS20105604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Collaborative Recommendation Algorithm Integrating Probabilistic Matrix Factorization and Neighbor Model
The existing collaborative recommendation algorithms suffer from lower recommendation precision due to the problem of data sparsity. To solve this problem, we propose a novel collaborative recommendation algorithm which integrates the probabilistic matrix factorization and neighbor models. We first propose a method to calculate the similarity between users or items based on the probabilistic matrix factorization model and construct a natural exponential function to compute the weighted similarity. Then we devise a collaborative recommendation algorithm to make recommendations for the target user, which dynamically adjusts the recommendation results for user- and item-based models by the balance adjustment factor. The experimental results on the MovieLens dataset show that the proposed algorithm outperforms the existing algorithms in terms of prediction accuracy.