基于神经网络的高效主成分分析算法

Padmakar Pandey, A. Chakraborty, G. Nandi
{"title":"基于神经网络的高效主成分分析算法","authors":"Padmakar Pandey, A. Chakraborty, G. Nandi","doi":"10.1109/INFOCOMTECH.2018.8722348","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) is a very important Statistical analysis tool and therefore many researchers are working to improve the algorithm for better performance and better data interpretation. To improve PCA algorithm in this paper we propose to deploy a multilayer neural network with linear artificial neurons to calculate eigenvalues and corresponding eigenvectors using back-propagation learning algorithm. This approach enables us to find all the eigenvalues and its corresponding eigenvectors simultaneously by training the network. Conventional approach to calculate eigen pairs using singular value decomposition (SVD) is time consuming for large datasets because it is suitable to find one particular eigen pair during one run. The second approach that we propose for improving PCA is to decide the best eigenvectors or the principal components that best represent our original input data. This is done by extracting important features by a neural network of desired dimension from our original data by training all the features of that data.","PeriodicalId":175757,"journal":{"name":"2018 Conference on Information and Communication Technology (CICT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Neural Network Based Principal Component Analysis Algorithm\",\"authors\":\"Padmakar Pandey, A. Chakraborty, G. Nandi\",\"doi\":\"10.1109/INFOCOMTECH.2018.8722348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal Component Analysis (PCA) is a very important Statistical analysis tool and therefore many researchers are working to improve the algorithm for better performance and better data interpretation. To improve PCA algorithm in this paper we propose to deploy a multilayer neural network with linear artificial neurons to calculate eigenvalues and corresponding eigenvectors using back-propagation learning algorithm. This approach enables us to find all the eigenvalues and its corresponding eigenvectors simultaneously by training the network. Conventional approach to calculate eigen pairs using singular value decomposition (SVD) is time consuming for large datasets because it is suitable to find one particular eigen pair during one run. The second approach that we propose for improving PCA is to decide the best eigenvectors or the principal components that best represent our original input data. This is done by extracting important features by a neural network of desired dimension from our original data by training all the features of that data.\",\"PeriodicalId\":175757,\"journal\":{\"name\":\"2018 Conference on Information and Communication Technology (CICT)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Information and Communication Technology (CICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMTECH.2018.8722348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Information and Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMTECH.2018.8722348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

主成分分析(PCA)是一种非常重要的统计分析工具,因此许多研究人员都在努力改进算法以获得更好的性能和更好的数据解释。为了改进主成分分析算法,本文提出了一种基于线性人工神经元的多层神经网络,利用反向传播学习算法计算特征值和相应的特征向量。这种方法使我们能够通过训练网络同时找到所有的特征值及其对应的特征向量。传统的使用奇异值分解(SVD)计算特征对的方法对于大型数据集来说非常耗时,因为它适合在一次运行中找到一个特定的特征对。我们提出的改进PCA的第二种方法是确定最能代表原始输入数据的最佳特征向量或主成分。这是通过神经网络从原始数据中提取重要的特征,通过训练数据的所有特征来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Neural Network Based Principal Component Analysis Algorithm
Principal Component Analysis (PCA) is a very important Statistical analysis tool and therefore many researchers are working to improve the algorithm for better performance and better data interpretation. To improve PCA algorithm in this paper we propose to deploy a multilayer neural network with linear artificial neurons to calculate eigenvalues and corresponding eigenvectors using back-propagation learning algorithm. This approach enables us to find all the eigenvalues and its corresponding eigenvectors simultaneously by training the network. Conventional approach to calculate eigen pairs using singular value decomposition (SVD) is time consuming for large datasets because it is suitable to find one particular eigen pair during one run. The second approach that we propose for improving PCA is to decide the best eigenvectors or the principal components that best represent our original input data. This is done by extracting important features by a neural network of desired dimension from our original data by training all the features of that data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信