用血管内磁共振造影剂绘制心肌灌注图,通过空间约束方法进行稳健估计

B. Neyran, S. Carme, M. Wiart, M. Robini, E. Soulas
{"title":"用血管内磁共振造影剂绘制心肌灌注图,通过空间约束方法进行稳健估计","authors":"B. Neyran, S. Carme, M. Wiart, M. Robini, E. Soulas","doi":"10.1109/CIC.2005.1588123","DOIUrl":null,"url":null,"abstract":"Evaluation of quantitative parameters such as regional myocardial blood flow (rMBF), blood volume (rMBV), and mean transit time (rMTT) by MRI is gaining acceptance for clinical applications, but still lacks robust post-processing methods for map generation. Pixel by pixel analysis leads to high variance of the estimates and variance reduction by posterior spatial averaging does not produce satisfactory results. We propose a parametric estimation technique that smoothes the variance of the estimates within parametric homogeneous regions while preserving discontinuities (in the sense that smoothing is not performed across regions with different parametric contents). Our approach lies within the Bayesian framework. It is based on local autoregressive moving average (ARMA) estimation, constrained by an edge-preserving smoothness prior. The prior stems from Markov random fields (MRF) modeling and involves non-quadratic potential functions. The output of the resulting algorithm is a regularized rMBF map. The method is validated on synthetic MR kinetics and tested on first-pass T1 images of an isolated pig heart using an intravascular contrast agent. Comparison of our results with pixel by pixel estimates clearly demonstrate the ability of the proposed approach to improve parametric estimation in terms of variance reduction and discontinuity preservation","PeriodicalId":239491,"journal":{"name":"Computers in Cardiology, 2005","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping myocardial perfusion with an intravascular MR contrast agent, a robust estimation by a spatially constrained approach\",\"authors\":\"B. Neyran, S. Carme, M. Wiart, M. Robini, E. Soulas\",\"doi\":\"10.1109/CIC.2005.1588123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of quantitative parameters such as regional myocardial blood flow (rMBF), blood volume (rMBV), and mean transit time (rMTT) by MRI is gaining acceptance for clinical applications, but still lacks robust post-processing methods for map generation. Pixel by pixel analysis leads to high variance of the estimates and variance reduction by posterior spatial averaging does not produce satisfactory results. We propose a parametric estimation technique that smoothes the variance of the estimates within parametric homogeneous regions while preserving discontinuities (in the sense that smoothing is not performed across regions with different parametric contents). Our approach lies within the Bayesian framework. It is based on local autoregressive moving average (ARMA) estimation, constrained by an edge-preserving smoothness prior. The prior stems from Markov random fields (MRF) modeling and involves non-quadratic potential functions. The output of the resulting algorithm is a regularized rMBF map. The method is validated on synthetic MR kinetics and tested on first-pass T1 images of an isolated pig heart using an intravascular contrast agent. Comparison of our results with pixel by pixel estimates clearly demonstrate the ability of the proposed approach to improve parametric estimation in terms of variance reduction and discontinuity preservation\",\"PeriodicalId\":239491,\"journal\":{\"name\":\"Computers in Cardiology, 2005\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Cardiology, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2005.1588123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Cardiology, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2005.1588123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MRI定量评价区域心肌血流量(rMBF)、血容量(rMBV)和平均传递时间(rMTT)等参数在临床应用中越来越被接受,但仍然缺乏强大的后处理方法来生成地图。逐像素分析导致估计的方差较大,后验空间平均的方差减小不能产生令人满意的结果。我们提出了一种参数估计技术,该技术平滑了参数均匀区域内估计的方差,同时保留了不连续(在具有不同参数内容的区域之间不进行平滑)。我们的方法是在贝叶斯框架内。它是基于局部自回归移动平均(ARMA)估计,由边缘保持平滑先验约束。前者源于马尔科夫随机场(MRF)建模,涉及非二次势函数。所得算法的输出是一个正则化的rMBF映射。该方法在合成磁共振动力学上进行了验证,并使用血管内造影剂在离体猪心脏的首过T1图像上进行了测试。将我们的结果与逐像素估计进行比较,清楚地证明了所提出的方法在方差减小和不连续保存方面改进参数估计的能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping myocardial perfusion with an intravascular MR contrast agent, a robust estimation by a spatially constrained approach
Evaluation of quantitative parameters such as regional myocardial blood flow (rMBF), blood volume (rMBV), and mean transit time (rMTT) by MRI is gaining acceptance for clinical applications, but still lacks robust post-processing methods for map generation. Pixel by pixel analysis leads to high variance of the estimates and variance reduction by posterior spatial averaging does not produce satisfactory results. We propose a parametric estimation technique that smoothes the variance of the estimates within parametric homogeneous regions while preserving discontinuities (in the sense that smoothing is not performed across regions with different parametric contents). Our approach lies within the Bayesian framework. It is based on local autoregressive moving average (ARMA) estimation, constrained by an edge-preserving smoothness prior. The prior stems from Markov random fields (MRF) modeling and involves non-quadratic potential functions. The output of the resulting algorithm is a regularized rMBF map. The method is validated on synthetic MR kinetics and tested on first-pass T1 images of an isolated pig heart using an intravascular contrast agent. Comparison of our results with pixel by pixel estimates clearly demonstrate the ability of the proposed approach to improve parametric estimation in terms of variance reduction and discontinuity preservation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信