关于自反环的注释

E. Ali, A. Elshokry
{"title":"关于自反环的注释","authors":"E. Ali, A. Elshokry","doi":"10.37418/amsj.12.1.18","DOIUrl":null,"url":null,"abstract":"Mason introduced the reflexive property for ideals and then this concept was generalized by Kim and Baik, defining idempotent reflexive right ideals and rings. In this note we consider reflexive property of a special subring of the infinite upper triangular matrix ring over a ring $R.$ We proved that, if $R$ is a left $APP$-ring, then $V_{n}(R)$ is reflexive. We also give an example which shows that the ring $V_{n}(R)$ need not be left $APP$ when $R$ is a left $APP$-ring.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON REFLEXIVE RINGS\",\"authors\":\"E. Ali, A. Elshokry\",\"doi\":\"10.37418/amsj.12.1.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mason introduced the reflexive property for ideals and then this concept was generalized by Kim and Baik, defining idempotent reflexive right ideals and rings. In this note we consider reflexive property of a special subring of the infinite upper triangular matrix ring over a ring $R.$ We proved that, if $R$ is a left $APP$-ring, then $V_{n}(R)$ is reflexive. We also give an example which shows that the ring $V_{n}(R)$ need not be left $APP$ when $R$ is a left $APP$-ring.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.1.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Mason引入了理想的自反性,Kim和Baik推广了这一概念,定义了幂等自反的右理想和环。本文研究无限上三角矩阵环在环$R上的一个特殊子环的自反性。我们证明了,如果$R$是一个左$APP$环,则$V_{n}(R)$是自反的。我们还给出了一个例子,说明当$R$是一个左$APP$环时,$V_{n}(R)$不需要左$APP$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NOTE ON REFLEXIVE RINGS
Mason introduced the reflexive property for ideals and then this concept was generalized by Kim and Baik, defining idempotent reflexive right ideals and rings. In this note we consider reflexive property of a special subring of the infinite upper triangular matrix ring over a ring $R.$ We proved that, if $R$ is a left $APP$-ring, then $V_{n}(R)$ is reflexive. We also give an example which shows that the ring $V_{n}(R)$ need not be left $APP$ when $R$ is a left $APP$-ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信