基于kpca的GLRT技术的化工过程故障检测

R. Baklouti, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida
{"title":"基于kpca的GLRT技术的化工过程故障检测","authors":"R. Baklouti, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida","doi":"10.1109/ATSIP.2017.8075513","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of nonlinear fault detection of chemical processes. The objective is to extend our previous work [1] to provide a better performance in terms of fault detection accuracies by developing a pre-image kernel PCA (KPCA)-based Generalized Likelihood Ratio Test (GLRT) technique. The benefit of the pre-image kPCA technique lies in its ability to compute the residual in the original space using the KPCA from the feature space. In addition, GLRT provides more accurate results in terms of fault detection. The performance of the developed pre-image KPCA-based GLRT fault detection technique is evaluated using simulated continuously stirred tank reactor (CSTR) model.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fault detection of chemical processes using KPCA-based GLRT technique\",\"authors\":\"R. Baklouti, M. Mansouri, H. Nounou, M. Nounou, M. Slima, A. Hamida\",\"doi\":\"10.1109/ATSIP.2017.8075513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of nonlinear fault detection of chemical processes. The objective is to extend our previous work [1] to provide a better performance in terms of fault detection accuracies by developing a pre-image kernel PCA (KPCA)-based Generalized Likelihood Ratio Test (GLRT) technique. The benefit of the pre-image kPCA technique lies in its ability to compute the residual in the original space using the KPCA from the feature space. In addition, GLRT provides more accurate results in terms of fault detection. The performance of the developed pre-image KPCA-based GLRT fault detection technique is evaluated using simulated continuously stirred tank reactor (CSTR) model.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了化工过程的非线性故障检测问题。我们的目标是扩展我们之前的工作[1],通过开发基于预图像核PCA (KPCA)的广义似然比测试(GLRT)技术,在故障检测精度方面提供更好的性能。预图像kPCA技术的优点在于它能够利用特征空间中的kPCA计算原始空间中的残差。此外,GLRT在故障检测方面提供了更准确的结果。利用模拟连续搅拌槽式反应器(CSTR)模型,对基于预图像kpca的GLRT故障检测技术的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault detection of chemical processes using KPCA-based GLRT technique
In this paper, we address the problem of nonlinear fault detection of chemical processes. The objective is to extend our previous work [1] to provide a better performance in terms of fault detection accuracies by developing a pre-image kernel PCA (KPCA)-based Generalized Likelihood Ratio Test (GLRT) technique. The benefit of the pre-image kPCA technique lies in its ability to compute the residual in the original space using the KPCA from the feature space. In addition, GLRT provides more accurate results in terms of fault detection. The performance of the developed pre-image KPCA-based GLRT fault detection technique is evaluated using simulated continuously stirred tank reactor (CSTR) model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信