非饱和目标识别与预测的神经网络数据处理系统优化

O. Djumanov, S. Kholmonov
{"title":"非饱和目标识别与预测的神经网络数据处理系统优化","authors":"O. Djumanov, S. Kholmonov","doi":"10.1109/ICAICT.2010.5612037","DOIUrl":null,"url":null,"abstract":"The problem of construction the neuronetworking systems for non-stationary information adaptive processing at various practical applications is formulated. The developed methods and algorithms of neural network training subset formation allow to take into account the conditions of information transfer, variation of statistical parameters and dynamic properties of data. The controlling algorithms which process the data with continuous nature are developed by criteria of minimal mean-squared error. The models and algorithms are offered for optimization and neurosystem learning.","PeriodicalId":314036,"journal":{"name":"2010 4th International Conference on Application of Information and Communication Technologies","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of learning the neuronetworking data processing system for non-satinary objects recognition and forecasting\",\"authors\":\"O. Djumanov, S. Kholmonov\",\"doi\":\"10.1109/ICAICT.2010.5612037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of construction the neuronetworking systems for non-stationary information adaptive processing at various practical applications is formulated. The developed methods and algorithms of neural network training subset formation allow to take into account the conditions of information transfer, variation of statistical parameters and dynamic properties of data. The controlling algorithms which process the data with continuous nature are developed by criteria of minimal mean-squared error. The models and algorithms are offered for optimization and neurosystem learning.\",\"PeriodicalId\":314036,\"journal\":{\"name\":\"2010 4th International Conference on Application of Information and Communication Technologies\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Conference on Application of Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICT.2010.5612037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Application of Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICT.2010.5612037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了在各种实际应用中构造用于非平稳信息自适应处理的神经网络系统的问题。神经网络训练子集形成的方法和算法考虑了信息传递的条件、统计参数的变化和数据的动态特性。处理连续性质数据的控制算法以均方误差最小为准则。为优化和神经系统学习提供了模型和算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of learning the neuronetworking data processing system for non-satinary objects recognition and forecasting
The problem of construction the neuronetworking systems for non-stationary information adaptive processing at various practical applications is formulated. The developed methods and algorithms of neural network training subset formation allow to take into account the conditions of information transfer, variation of statistical parameters and dynamic properties of data. The controlling algorithms which process the data with continuous nature are developed by criteria of minimal mean-squared error. The models and algorithms are offered for optimization and neurosystem learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信