{"title":"点阵QCD中的能量-动量张量与状态方程","authors":"M. D. Brida, L. Giusti, M. Pepe","doi":"10.22323/1.363.0041","DOIUrl":null,"url":null,"abstract":"We present a new theoretical and practical strategy to renormalize non-perturbatively the energy-momentum tensor in lattice QCD based on the framework of shifted boundary conditions. As a preparatory step for the fully non-perturbative calculation, we apply the strategy at 1-loop order in perturbation theory determining the renormalization constants of both the gluonic and the fermionic components of the energy-momentum tensor. Using shifted boundary conditions, the entropy density of QCD is directly related to the expectation value of the space-time components of the renormalized energy-momentum tensor. We then discuss its practical implementation by numerical simulations of QCD with 3 flavours of Wilson quarks for temperatures between 2.5 GeV and 80 GeV.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The energy-momentum tensor in lattice QCD and the Equation of State\",\"authors\":\"M. D. Brida, L. Giusti, M. Pepe\",\"doi\":\"10.22323/1.363.0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new theoretical and practical strategy to renormalize non-perturbatively the energy-momentum tensor in lattice QCD based on the framework of shifted boundary conditions. As a preparatory step for the fully non-perturbative calculation, we apply the strategy at 1-loop order in perturbation theory determining the renormalization constants of both the gluonic and the fermionic components of the energy-momentum tensor. Using shifted boundary conditions, the entropy density of QCD is directly related to the expectation value of the space-time components of the renormalized energy-momentum tensor. We then discuss its practical implementation by numerical simulations of QCD with 3 flavours of Wilson quarks for temperatures between 2.5 GeV and 80 GeV.\",\"PeriodicalId\":147987,\"journal\":{\"name\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The energy-momentum tensor in lattice QCD and the Equation of State
We present a new theoretical and practical strategy to renormalize non-perturbatively the energy-momentum tensor in lattice QCD based on the framework of shifted boundary conditions. As a preparatory step for the fully non-perturbative calculation, we apply the strategy at 1-loop order in perturbation theory determining the renormalization constants of both the gluonic and the fermionic components of the energy-momentum tensor. Using shifted boundary conditions, the entropy density of QCD is directly related to the expectation value of the space-time components of the renormalized energy-momentum tensor. We then discuss its practical implementation by numerical simulations of QCD with 3 flavours of Wilson quarks for temperatures between 2.5 GeV and 80 GeV.