{"title":"非线性滤波中的泊松方程","authors":"R. Laugesen, P. Mehta, Sean P. Meyn, M. Raginsky","doi":"10.1137/13094743X","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to gain insight into the equations arising in nonlinear filtering, as well as into the feedback particle filter introduced in recent research. The analysis is inspired by the optimal transportation literature and by prior work on variational formulation of nonlinear filtering. The construction involves a discrete-time recursion based on the successive solution of minimization problems involving the so-called forward variational representation of the elementary Bayes' formula. The construction shows that the dynamics of the nonlinear filter may be regarded as a gradient flow, or a steepest descent, for a certain energy functional with respect to the Kullback-Leibler divergence pseudo-metric. The feedback particle filter algorithm is obtained using similar analysis. This filter is a controlled system, where the control is obtained via consideration of the first order optimality conditions for the variational problem. The filter is shown to be exact, i.e., the posterior distribution of the particle matches exactly the true posterior, provided the filter is initialized with the true prior.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Poisson's equation in nonlinear filtering\",\"authors\":\"R. Laugesen, P. Mehta, Sean P. Meyn, M. Raginsky\",\"doi\":\"10.1137/13094743X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to gain insight into the equations arising in nonlinear filtering, as well as into the feedback particle filter introduced in recent research. The analysis is inspired by the optimal transportation literature and by prior work on variational formulation of nonlinear filtering. The construction involves a discrete-time recursion based on the successive solution of minimization problems involving the so-called forward variational representation of the elementary Bayes' formula. The construction shows that the dynamics of the nonlinear filter may be regarded as a gradient flow, or a steepest descent, for a certain energy functional with respect to the Kullback-Leibler divergence pseudo-metric. The feedback particle filter algorithm is obtained using similar analysis. This filter is a controlled system, where the control is obtained via consideration of the first order optimality conditions for the variational problem. The filter is shown to be exact, i.e., the posterior distribution of the particle matches exactly the true posterior, provided the filter is initialized with the true prior.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/13094743X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/13094743X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The goal of this paper is to gain insight into the equations arising in nonlinear filtering, as well as into the feedback particle filter introduced in recent research. The analysis is inspired by the optimal transportation literature and by prior work on variational formulation of nonlinear filtering. The construction involves a discrete-time recursion based on the successive solution of minimization problems involving the so-called forward variational representation of the elementary Bayes' formula. The construction shows that the dynamics of the nonlinear filter may be regarded as a gradient flow, or a steepest descent, for a certain energy functional with respect to the Kullback-Leibler divergence pseudo-metric. The feedback particle filter algorithm is obtained using similar analysis. This filter is a controlled system, where the control is obtained via consideration of the first order optimality conditions for the variational problem. The filter is shown to be exact, i.e., the posterior distribution of the particle matches exactly the true posterior, provided the filter is initialized with the true prior.