超参数选择对客户群体数据人格化的影响

B. Jansen, Soon-Gyo Jung, Joni O. Salminen
{"title":"超参数选择对客户群体数据人格化的影响","authors":"B. Jansen, Soon-Gyo Jung, Joni O. Salminen","doi":"10.53375/ijecer.2021.31","DOIUrl":null,"url":null,"abstract":"We explore the effects of hyperparameter selections on the personification accuracy of customer analytics data from a corporate YouTube channel with an audience in the hundreds of thousands and customer interactions in the tens of millions. Using non-negative matrix factorization, we generate personas sets from 5 to 15 using the customer analytics data, with the number of personas being the changing hyperparameter. We then compare the gender, age, nationality, and topical interests of the personas across each of the 11 persona sets using the average of the 110 generated personas as the baseline. This analysis shows that hyperparameter selection significantly alters the personification of the analytics data, with the effect most apparent with age representation. The set of 10 personas provides one of the most accurate representations across all attributes, indicating that this may be a good default hyperparameter for personification. Future research can explore other personification attributes with other customer analytics datasets.","PeriodicalId":111426,"journal":{"name":"International Journal of Electrical and Computer Engineering Research","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Effect of Hyperparameter Selection on the Personification of Customer Population Data\",\"authors\":\"B. Jansen, Soon-Gyo Jung, Joni O. Salminen\",\"doi\":\"10.53375/ijecer.2021.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the effects of hyperparameter selections on the personification accuracy of customer analytics data from a corporate YouTube channel with an audience in the hundreds of thousands and customer interactions in the tens of millions. Using non-negative matrix factorization, we generate personas sets from 5 to 15 using the customer analytics data, with the number of personas being the changing hyperparameter. We then compare the gender, age, nationality, and topical interests of the personas across each of the 11 persona sets using the average of the 110 generated personas as the baseline. This analysis shows that hyperparameter selection significantly alters the personification of the analytics data, with the effect most apparent with age representation. The set of 10 personas provides one of the most accurate representations across all attributes, indicating that this may be a good default hyperparameter for personification. Future research can explore other personification attributes with other customer analytics datasets.\",\"PeriodicalId\":111426,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Research\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53375/ijecer.2021.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53375/ijecer.2021.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们探讨了超参数选择对客户分析数据的人格化准确性的影响,这些数据来自一个拥有数十万观众和数千万客户互动的企业YouTube频道。使用非负矩阵分解,我们使用客户分析数据生成5到15个角色集,其中角色的数量是不断变化的超参数。然后,我们使用生成的110个角色的平均值作为基线,比较11个角色集中每个角色的性别、年龄、国籍和主题兴趣。该分析表明,超参数选择显著改变了分析数据的人格化,其影响在年龄表示中最为明显。10个人物角色的集合提供了所有属性中最准确的表示之一,表明这可能是拟人化的一个很好的默认超参数。未来的研究可以用其他客户分析数据集探索其他个性化属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Hyperparameter Selection on the Personification of Customer Population Data
We explore the effects of hyperparameter selections on the personification accuracy of customer analytics data from a corporate YouTube channel with an audience in the hundreds of thousands and customer interactions in the tens of millions. Using non-negative matrix factorization, we generate personas sets from 5 to 15 using the customer analytics data, with the number of personas being the changing hyperparameter. We then compare the gender, age, nationality, and topical interests of the personas across each of the 11 persona sets using the average of the 110 generated personas as the baseline. This analysis shows that hyperparameter selection significantly alters the personification of the analytics data, with the effect most apparent with age representation. The set of 10 personas provides one of the most accurate representations across all attributes, indicating that this may be a good default hyperparameter for personification. Future research can explore other personification attributes with other customer analytics datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信