有限元中的同网格加速技术

Chun Wang, Bo Xiong, Ming Zhang
{"title":"有限元中的同网格加速技术","authors":"Chun Wang, Bo Xiong, Ming Zhang","doi":"10.1109/GEMCCON50979.2020.9456714","DOIUrl":null,"url":null,"abstract":"An accelerating technique by same meshes in finite element method(FEM) is introduced. By the characteristic of base function depending on geometric form the computing quantities of base function and coefficients matrix are reduced by constructing the same meshes. And farther coefficients matrix of fem quick filling is realized and the quick solving of aim problem is achieved as well. The algorithm is demonstrated by eigen modes solving of the rectangle filling waveguide. The novel method can be extended to the fem solving of other problems.","PeriodicalId":194675,"journal":{"name":"2020 6th Global Electromagnetic Compatibility Conference (GEMCCON)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accelerating technique by same meshes in FEM\",\"authors\":\"Chun Wang, Bo Xiong, Ming Zhang\",\"doi\":\"10.1109/GEMCCON50979.2020.9456714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accelerating technique by same meshes in finite element method(FEM) is introduced. By the characteristic of base function depending on geometric form the computing quantities of base function and coefficients matrix are reduced by constructing the same meshes. And farther coefficients matrix of fem quick filling is realized and the quick solving of aim problem is achieved as well. The algorithm is demonstrated by eigen modes solving of the rectangle filling waveguide. The novel method can be extended to the fem solving of other problems.\",\"PeriodicalId\":194675,\"journal\":{\"name\":\"2020 6th Global Electromagnetic Compatibility Conference (GEMCCON)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th Global Electromagnetic Compatibility Conference (GEMCCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEMCCON50979.2020.9456714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th Global Electromagnetic Compatibility Conference (GEMCCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEMCCON50979.2020.9456714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了有限元法中采用相同网格的加速技术。利用基函数依赖几何形式的特点,通过构造相同的网格,减少了基函数和系数矩阵的计算量。实现了有限元快速填充系数矩阵,实现了目标问题的快速求解。通过矩形填充波导本征模的求解,验证了该算法的有效性。该方法可推广到其它有限元问题的求解中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An accelerating technique by same meshes in FEM
An accelerating technique by same meshes in finite element method(FEM) is introduced. By the characteristic of base function depending on geometric form the computing quantities of base function and coefficients matrix are reduced by constructing the same meshes. And farther coefficients matrix of fem quick filling is realized and the quick solving of aim problem is achieved as well. The algorithm is demonstrated by eigen modes solving of the rectangle filling waveguide. The novel method can be extended to the fem solving of other problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信