稳定随机场和加性误差

R. Sabre
{"title":"稳定随机场和加性误差","authors":"R. Sabre","doi":"10.5121/csit.2022.122201","DOIUrl":null,"url":null,"abstract":"This work studies the estimation of spectral density for random field (two-dimensional signal) when the spectral measure have certain mixture and the process is observed with a constant error. The objective of this paper is to give an estimator of the constant error by using the Jackson polynomial kernel. We show that the rate of convergence depends of size of sample and the behaviours of the spectral density at origin. Indeed the estimator converges rapidly when the spectral density is null at origin. Few long memory signals are taken here as example.","PeriodicalId":153862,"journal":{"name":"Signal Processing and Vision","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alpha Stable Random Fields and Additive Error\",\"authors\":\"R. Sabre\",\"doi\":\"10.5121/csit.2022.122201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the estimation of spectral density for random field (two-dimensional signal) when the spectral measure have certain mixture and the process is observed with a constant error. The objective of this paper is to give an estimator of the constant error by using the Jackson polynomial kernel. We show that the rate of convergence depends of size of sample and the behaviours of the spectral density at origin. Indeed the estimator converges rapidly when the spectral density is null at origin. Few long memory signals are taken here as example.\",\"PeriodicalId\":153862,\"journal\":{\"name\":\"Signal Processing and Vision\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.122201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.122201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了随机场(二维信号)在光谱测量具有一定混合且观测过程误差恒定的情况下的光谱密度估计。本文的目的是利用Jackson多项式核给出常数误差的估计。我们表明,收敛速度取决于样本的大小和谱密度在原点的行为。当谱密度在原点为零时,估计器收敛速度很快。这里以几种长记忆信号为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alpha Stable Random Fields and Additive Error
This work studies the estimation of spectral density for random field (two-dimensional signal) when the spectral measure have certain mixture and the process is observed with a constant error. The objective of this paper is to give an estimator of the constant error by using the Jackson polynomial kernel. We show that the rate of convergence depends of size of sample and the behaviours of the spectral density at origin. Indeed the estimator converges rapidly when the spectral density is null at origin. Few long memory signals are taken here as example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信