利用各种数值技术研究种群分散的行为

Abbas Imran, Ejaz Asad
{"title":"利用各种数值技术研究种群分散的行为","authors":"Abbas Imran, Ejaz Asad","doi":"10.17352/amp.000092","DOIUrl":null,"url":null,"abstract":"The exploration of population diversity motivated us to present this paper. A mathematical model for the ecological process of population dispersion is finally considered by us to figure out the dispersion of population along the area. The dispersal from one's home site to the next is considered the most important phenomenon in the demographic and evolutionary dynamics of the population. The most important factor regarding dispersal is the spatial distribution of individuals. This dispersal may result in enhanced clamping, huge randomness, or even more spacing. The Adomian Decomposition method has opted to work out the problem analytically. Numerical schemes brought an approximate solution by incorporating the Forward-in-Time and Central-In-Space (FTCS) scheme, the Crank Nicolson (CN) scheme, and Numerov’s method. The validity and efficiency of schemes employed for the proposed model are supported by core properties like stability, consistency, and convergence. A comparison is made between the results calculated via schemes and the one analytically.","PeriodicalId":430514,"journal":{"name":"Annals of Mathematics and Physics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The behavior of population dispersion employing various numerical techniques\",\"authors\":\"Abbas Imran, Ejaz Asad\",\"doi\":\"10.17352/amp.000092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploration of population diversity motivated us to present this paper. A mathematical model for the ecological process of population dispersion is finally considered by us to figure out the dispersion of population along the area. The dispersal from one's home site to the next is considered the most important phenomenon in the demographic and evolutionary dynamics of the population. The most important factor regarding dispersal is the spatial distribution of individuals. This dispersal may result in enhanced clamping, huge randomness, or even more spacing. The Adomian Decomposition method has opted to work out the problem analytically. Numerical schemes brought an approximate solution by incorporating the Forward-in-Time and Central-In-Space (FTCS) scheme, the Crank Nicolson (CN) scheme, and Numerov’s method. The validity and efficiency of schemes employed for the proposed model are supported by core properties like stability, consistency, and convergence. A comparison is made between the results calculated via schemes and the one analytically.\",\"PeriodicalId\":430514,\"journal\":{\"name\":\"Annals of Mathematics and Physics\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17352/amp.000092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17352/amp.000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对人口多样性的探索促使我们提出这篇论文。最后,我们考虑了种群分散生态过程的数学模型,以计算种群沿区域的分散。从一个人的居住地到下一个居住地的分散被认为是人口统计学和进化动力学中最重要的现象。关于分散最重要的因素是个体的空间分布。这种分散可能导致夹紧增强,随机性大,甚至间距更大。采用阿多米亚分解法对问题进行了解析求解。数值方案通过结合时间前向和空间中心(FTCS)方案、曲克·尼科尔森(CN)方案和Numerov方法带来了近似解。所提出的模型所采用的方案的有效性和效率得到了稳定性、一致性和收敛性等核心特性的支持。并将方案计算结果与解析计算结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The behavior of population dispersion employing various numerical techniques
The exploration of population diversity motivated us to present this paper. A mathematical model for the ecological process of population dispersion is finally considered by us to figure out the dispersion of population along the area. The dispersal from one's home site to the next is considered the most important phenomenon in the demographic and evolutionary dynamics of the population. The most important factor regarding dispersal is the spatial distribution of individuals. This dispersal may result in enhanced clamping, huge randomness, or even more spacing. The Adomian Decomposition method has opted to work out the problem analytically. Numerical schemes brought an approximate solution by incorporating the Forward-in-Time and Central-In-Space (FTCS) scheme, the Crank Nicolson (CN) scheme, and Numerov’s method. The validity and efficiency of schemes employed for the proposed model are supported by core properties like stability, consistency, and convergence. A comparison is made between the results calculated via schemes and the one analytically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信