{"title":"平均曲率积分在弯曲下是不变的","authors":"F. Almgren, Igor Rivin","doi":"10.2140/GTM.1998.1.1","DOIUrl":null,"url":null,"abstract":"Suppose Mt is a smooth family of compact connected two dimensional submanifolds of Euclidean space E without boundary varying isometrically in their induced Riemannian metrics. Then we show that the mean curvature integrals ∫","PeriodicalId":430700,"journal":{"name":"Geometry &amp Topology Monographs","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"The mean curvature integral is invariant under bending\",\"authors\":\"F. Almgren, Igor Rivin\",\"doi\":\"10.2140/GTM.1998.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose Mt is a smooth family of compact connected two dimensional submanifolds of Euclidean space E without boundary varying isometrically in their induced Riemannian metrics. Then we show that the mean curvature integrals ∫\",\"PeriodicalId\":430700,\"journal\":{\"name\":\"Geometry &amp Topology Monographs\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry &amp Topology Monographs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GTM.1998.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry &amp Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GTM.1998.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mean curvature integral is invariant under bending
Suppose Mt is a smooth family of compact connected two dimensional submanifolds of Euclidean space E without boundary varying isometrically in their induced Riemannian metrics. Then we show that the mean curvature integrals ∫