基于深度学习的移动网络专用RAN切片

P. Du, A. Nakao
{"title":"基于深度学习的移动网络专用RAN切片","authors":"P. Du, A. Nakao","doi":"10.1109/CloudNet.2018.8549243","DOIUrl":null,"url":null,"abstract":"Effectively identifying application is desirable for network operators to improve spectrum efficiency and user experience in future mobile networks that are expected to support multiple kinds of applications with different quality of service (QoS) requirements. In this paper, we present a Radio Access Network (RAN) slicing architecture utilizing in-network deep learning to apply application specific radio spectrum scheduling. We use a small number of customized supervising phones to generate training data in real-time and apply deep learning at the packet gateway (P-GW), where we tag the downlink packets with the identified application name and transmit them to eNB for application specific spectrum scheduling. The preliminary experimental results show the feasibility and the efficiency of the proposed application specific RAN slicing.","PeriodicalId":436842,"journal":{"name":"2018 IEEE 7th International Conference on Cloud Networking (CloudNet)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Deep Learning-based Application Specific RAN Slicing for Mobile Networks\",\"authors\":\"P. Du, A. Nakao\",\"doi\":\"10.1109/CloudNet.2018.8549243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effectively identifying application is desirable for network operators to improve spectrum efficiency and user experience in future mobile networks that are expected to support multiple kinds of applications with different quality of service (QoS) requirements. In this paper, we present a Radio Access Network (RAN) slicing architecture utilizing in-network deep learning to apply application specific radio spectrum scheduling. We use a small number of customized supervising phones to generate training data in real-time and apply deep learning at the packet gateway (P-GW), where we tag the downlink packets with the identified application name and transmit them to eNB for application specific spectrum scheduling. The preliminary experimental results show the feasibility and the efficiency of the proposed application specific RAN slicing.\",\"PeriodicalId\":436842,\"journal\":{\"name\":\"2018 IEEE 7th International Conference on Cloud Networking (CloudNet)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th International Conference on Cloud Networking (CloudNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudNet.2018.8549243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet.2018.8549243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

有效识别应用是网络运营商在未来移动网络中提高频谱效率和用户体验的必要条件,未来移动网络有望支持具有不同服务质量(QoS)要求的多种应用。在本文中,我们提出了一种利用网络内深度学习来应用特定应用的无线电频谱调度的无线接入网(RAN)切片架构。我们使用少量定制的监控电话实时生成训练数据,并在包网关(P-GW)上应用深度学习,在那里我们用识别的应用程序名称标记下行数据包,并将其传输到eNB,用于特定应用程序的频谱调度。初步实验结果表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-based Application Specific RAN Slicing for Mobile Networks
Effectively identifying application is desirable for network operators to improve spectrum efficiency and user experience in future mobile networks that are expected to support multiple kinds of applications with different quality of service (QoS) requirements. In this paper, we present a Radio Access Network (RAN) slicing architecture utilizing in-network deep learning to apply application specific radio spectrum scheduling. We use a small number of customized supervising phones to generate training data in real-time and apply deep learning at the packet gateway (P-GW), where we tag the downlink packets with the identified application name and transmit them to eNB for application specific spectrum scheduling. The preliminary experimental results show the feasibility and the efficiency of the proposed application specific RAN slicing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信