行人视频数据的提取与分类

Ho-chul Shin, Jae-Y. Lee
{"title":"行人视频数据的提取与分类","authors":"Ho-chul Shin, Jae-Y. Lee","doi":"10.1109/ICTC.2018.8539426","DOIUrl":null,"url":null,"abstract":"In this study, we have developed abstracted pedestrian behavior representation and classification method for pedestrian video surveillance system. An effective intelligent surveillance system can be constructed if the high-resolution surveillance image information is efficiently summarized. The motion of the pedestrian is represented by a multi-layer grid map using a detector and a tracker. A normal pattern and anomalous pattern database were constructed and classified using the CNN classifier. With the abstracted pedestrian data and CNN network, the abnormal situation can be detected up to recall 92.0%, precision 99.9%.","PeriodicalId":417962,"journal":{"name":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pedestrian Video Data Abstraction and Classification for Surveillance System\",\"authors\":\"Ho-chul Shin, Jae-Y. Lee\",\"doi\":\"10.1109/ICTC.2018.8539426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we have developed abstracted pedestrian behavior representation and classification method for pedestrian video surveillance system. An effective intelligent surveillance system can be constructed if the high-resolution surveillance image information is efficiently summarized. The motion of the pedestrian is represented by a multi-layer grid map using a detector and a tracker. A normal pattern and anomalous pattern database were constructed and classified using the CNN classifier. With the abstracted pedestrian data and CNN network, the abnormal situation can be detected up to recall 92.0%, precision 99.9%.\",\"PeriodicalId\":417962,\"journal\":{\"name\":\"2018 International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC.2018.8539426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2018.8539426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,我们开发了行人视频监控系统的抽象行人行为表示和分类方法。对高分辨率的监控图像信息进行有效的汇总,才能构建有效的智能监控系统。行人的运动由多层网格图表示,其中使用检测器和跟踪器。构建了正常模式和异常模式数据库,并使用CNN分类器进行了分类。利用提取的行人数据和CNN网络,检测异常情况的召回率高达92.0%,准确率高达99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian Video Data Abstraction and Classification for Surveillance System
In this study, we have developed abstracted pedestrian behavior representation and classification method for pedestrian video surveillance system. An effective intelligent surveillance system can be constructed if the high-resolution surveillance image information is efficiently summarized. The motion of the pedestrian is represented by a multi-layer grid map using a detector and a tracker. A normal pattern and anomalous pattern database were constructed and classified using the CNN classifier. With the abstracted pedestrian data and CNN network, the abnormal situation can be detected up to recall 92.0%, precision 99.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信