{"title":"支持图形处理器的扩展精度","authors":"Mian Lu, Bingsheng He, Qiong Luo","doi":"10.1145/1869389.1869392","DOIUrl":null,"url":null,"abstract":"Scientific computing applications often require support for non-traditional data types, for example, numbers with a precision higher than 64-bit floats. As graphics processors, or GPUs, have emerged as a powerful accelerator for scientific computing, we design and implement a GPU-based extended precision library to enable applications with high precision requirement to run on the GPU. Our library contains arithmetic operators, mathematical functions, and data-parallel primitives, each of which can operate at either multi-term or multi-digit precision. The multi-term precision maintains an accuracy of up to 212 bits of signifcand whereas the multi-digit precision allows an accuracy of an arbitrary number of bits. Additionally, we have integrated the extended precision algorithms to a GPU-based query processing engine to support efficient query processing with extended precision on GPUs. To demonstrate the usage of our library, we have implemented three applications: parallel summation in climate modeling, Newton's method used in nonlinear physics, and high precision numerical integration in experimental mathematics. The GPU-based implementation is up to an order of magnitude faster, and achieves the same accuracy as their optimized, quadcore CPU-based counterparts.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Supporting extended precision on graphics processors\",\"authors\":\"Mian Lu, Bingsheng He, Qiong Luo\",\"doi\":\"10.1145/1869389.1869392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific computing applications often require support for non-traditional data types, for example, numbers with a precision higher than 64-bit floats. As graphics processors, or GPUs, have emerged as a powerful accelerator for scientific computing, we design and implement a GPU-based extended precision library to enable applications with high precision requirement to run on the GPU. Our library contains arithmetic operators, mathematical functions, and data-parallel primitives, each of which can operate at either multi-term or multi-digit precision. The multi-term precision maintains an accuracy of up to 212 bits of signifcand whereas the multi-digit precision allows an accuracy of an arbitrary number of bits. Additionally, we have integrated the extended precision algorithms to a GPU-based query processing engine to support efficient query processing with extended precision on GPUs. To demonstrate the usage of our library, we have implemented three applications: parallel summation in climate modeling, Newton's method used in nonlinear physics, and high precision numerical integration in experimental mathematics. The GPU-based implementation is up to an order of magnitude faster, and achieves the same accuracy as their optimized, quadcore CPU-based counterparts.\",\"PeriodicalId\":298901,\"journal\":{\"name\":\"International Workshop on Data Management on New Hardware\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1869389.1869392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869389.1869392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supporting extended precision on graphics processors
Scientific computing applications often require support for non-traditional data types, for example, numbers with a precision higher than 64-bit floats. As graphics processors, or GPUs, have emerged as a powerful accelerator for scientific computing, we design and implement a GPU-based extended precision library to enable applications with high precision requirement to run on the GPU. Our library contains arithmetic operators, mathematical functions, and data-parallel primitives, each of which can operate at either multi-term or multi-digit precision. The multi-term precision maintains an accuracy of up to 212 bits of signifcand whereas the multi-digit precision allows an accuracy of an arbitrary number of bits. Additionally, we have integrated the extended precision algorithms to a GPU-based query processing engine to support efficient query processing with extended precision on GPUs. To demonstrate the usage of our library, we have implemented three applications: parallel summation in climate modeling, Newton's method used in nonlinear physics, and high precision numerical integration in experimental mathematics. The GPU-based implementation is up to an order of magnitude faster, and achieves the same accuracy as their optimized, quadcore CPU-based counterparts.