基于分布式学习的多智能体系统状态预测

Daniel Hinkelmann, A. Schmeink, Guido Dartmann
{"title":"基于分布式学习的多智能体系统状态预测","authors":"Daniel Hinkelmann, A. Schmeink, Guido Dartmann","doi":"10.1145/3203217.3203230","DOIUrl":null,"url":null,"abstract":"A novel distributed event-triggered communication for multi-agent systems is presented. Each agent predicts its future states via an artificial neural network, where the prediction is solely based on own past states. The approach is therefore scalable with the number of agents. A communication is triggered if the discrepancy between actual and predicted state exceeds a threshold. Numerical results show that this approach reduces the communication effort remarkably compared to existing methods.","PeriodicalId":127096,"journal":{"name":"Proceedings of the 15th ACM International Conference on Computing Frontiers","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed learning-based state prediction for multi-agent systems with reduced communication effort\",\"authors\":\"Daniel Hinkelmann, A. Schmeink, Guido Dartmann\",\"doi\":\"10.1145/3203217.3203230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel distributed event-triggered communication for multi-agent systems is presented. Each agent predicts its future states via an artificial neural network, where the prediction is solely based on own past states. The approach is therefore scalable with the number of agents. A communication is triggered if the discrepancy between actual and predicted state exceeds a threshold. Numerical results show that this approach reduces the communication effort remarkably compared to existing methods.\",\"PeriodicalId\":127096,\"journal\":{\"name\":\"Proceedings of the 15th ACM International Conference on Computing Frontiers\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3203217.3203230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3203217.3203230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种适用于多智能体系统的分布式事件触发通信方法。每个智能体通过人工神经网络预测自己的未来状态,这种预测完全基于自己过去的状态。因此,该方法可以随着代理的数量而扩展。如果实际状态和预测状态之间的差异超过阈值,则触发通信。数值结果表明,与现有方法相比,该方法显著减少了通信工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed learning-based state prediction for multi-agent systems with reduced communication effort
A novel distributed event-triggered communication for multi-agent systems is presented. Each agent predicts its future states via an artificial neural network, where the prediction is solely based on own past states. The approach is therefore scalable with the number of agents. A communication is triggered if the discrepancy between actual and predicted state exceeds a threshold. Numerical results show that this approach reduces the communication effort remarkably compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信