基于频繁项集挖掘的乳腺癌预测优化模型

Ankita Sinha, B. Sahoo, S. Rautaray, M. Pandey
{"title":"基于频繁项集挖掘的乳腺癌预测优化模型","authors":"Ankita Sinha, B. Sahoo, S. Rautaray, M. Pandey","doi":"10.5815/ijieeb.2019.05.02","DOIUrl":null,"url":null,"abstract":"This presented research paper mainly studies the frequent itemsets mining approach for finding the most important attribute to overcome the existing problems in the extraction of relevant information by using data mining approaches from a huge amount of dataset. Firstly a state of art diagram for prediction is designed and data mining classifier like naive bayes, support vector machine, decision tree, knearest neighbour are compared and then proposed methodology with new techniques are proposed. Moreover, a new attribute filtering association frequent itemsets mining algorithm is presented. Then, by analyzing the feasibility of the proposed algorithm, the data mining classification classifier is compared. As a result, SVM produces the best result among all the classifier with attribute filtrating and without attribute filtrating. With attribute filtrating algorithm enhances the accuracy of all the other classifier.","PeriodicalId":427770,"journal":{"name":"International Journal of Information Engineering and Electronic Business","volume":"15 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Optimized Model for Breast Cancer Prediction Using Frequent Itemsets Mining\",\"authors\":\"Ankita Sinha, B. Sahoo, S. Rautaray, M. Pandey\",\"doi\":\"10.5815/ijieeb.2019.05.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This presented research paper mainly studies the frequent itemsets mining approach for finding the most important attribute to overcome the existing problems in the extraction of relevant information by using data mining approaches from a huge amount of dataset. Firstly a state of art diagram for prediction is designed and data mining classifier like naive bayes, support vector machine, decision tree, knearest neighbour are compared and then proposed methodology with new techniques are proposed. Moreover, a new attribute filtering association frequent itemsets mining algorithm is presented. Then, by analyzing the feasibility of the proposed algorithm, the data mining classification classifier is compared. As a result, SVM produces the best result among all the classifier with attribute filtrating and without attribute filtrating. With attribute filtrating algorithm enhances the accuracy of all the other classifier.\",\"PeriodicalId\":427770,\"journal\":{\"name\":\"International Journal of Information Engineering and Electronic Business\",\"volume\":\"15 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Engineering and Electronic Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijieeb.2019.05.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Engineering and Electronic Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijieeb.2019.05.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要研究频繁项集挖掘方法,寻找最重要的属性,以克服现有数据挖掘方法在海量数据集中提取相关信息时存在的问题。首先设计了预测图,并对朴素贝叶斯、支持向量机、决策树、最近邻等数据挖掘分类器进行了比较,提出了基于新技术的预测方法。此外,提出了一种新的属性过滤关联频繁项集挖掘算法。然后,通过分析所提出算法的可行性,对数据挖掘分类器进行了比较。结果表明,在有属性过滤和没有属性过滤的分类器中,支持向量机的分类效果最好。利用属性过滤算法提高了其他分类器的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Model for Breast Cancer Prediction Using Frequent Itemsets Mining
This presented research paper mainly studies the frequent itemsets mining approach for finding the most important attribute to overcome the existing problems in the extraction of relevant information by using data mining approaches from a huge amount of dataset. Firstly a state of art diagram for prediction is designed and data mining classifier like naive bayes, support vector machine, decision tree, knearest neighbour are compared and then proposed methodology with new techniques are proposed. Moreover, a new attribute filtering association frequent itemsets mining algorithm is presented. Then, by analyzing the feasibility of the proposed algorithm, the data mining classification classifier is compared. As a result, SVM produces the best result among all the classifier with attribute filtrating and without attribute filtrating. With attribute filtrating algorithm enhances the accuracy of all the other classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信