应用前馈神经网络模拟电工钢磁滞

S. Quondam Antonio, F. Riganti Fulginei, H. Rimal, A. M. Ghanim
{"title":"应用前馈神经网络模拟电工钢磁滞","authors":"S. Quondam Antonio, F. Riganti Fulginei, H. Rimal, A. M. Ghanim","doi":"10.1109/MELECON48756.2020.9140585","DOIUrl":null,"url":null,"abstract":"The present investigation aims at the definition of an efficient and robust neural network-based model to simulate the magnetic hysteresis in performing magnetic alloys suitable for aircraft applications. Starting from a set of measured hysteresis loops, a convenient and effective method to train the network consists to identify the Preisach model and use it for the generation of the training set. The obtained neural network turned out to be particularly robust and able to reproduce the behaviour of the Preisach model with a significant reduction of the computational time. The comparative analysis between the two approaches takes into account different kinds of excitation waveforms.","PeriodicalId":268311,"journal":{"name":"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Use of Feedforward Neural Networks to Simulate Magnetic Hysteresis in Electrical Steels\",\"authors\":\"S. Quondam Antonio, F. Riganti Fulginei, H. Rimal, A. M. Ghanim\",\"doi\":\"10.1109/MELECON48756.2020.9140585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present investigation aims at the definition of an efficient and robust neural network-based model to simulate the magnetic hysteresis in performing magnetic alloys suitable for aircraft applications. Starting from a set of measured hysteresis loops, a convenient and effective method to train the network consists to identify the Preisach model and use it for the generation of the training set. The obtained neural network turned out to be particularly robust and able to reproduce the behaviour of the Preisach model with a significant reduction of the computational time. The comparative analysis between the two approaches takes into account different kinds of excitation waveforms.\",\"PeriodicalId\":268311,\"journal\":{\"name\":\"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELECON48756.2020.9140585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON48756.2020.9140585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在定义一种高效且鲁棒的基于神经网络的模型来模拟适用于飞机应用的磁性合金的磁滞。从一组测量到的滞回线出发,识别Preisach模型并将其用于训练集的生成,是一种方便有效的训练网络的方法。得到的神经网络被证明是特别健壮的,并且能够在显著减少计算时间的情况下重现Preisach模型的行为。两种方法的对比分析考虑了不同类型的激励波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Use of Feedforward Neural Networks to Simulate Magnetic Hysteresis in Electrical Steels
The present investigation aims at the definition of an efficient and robust neural network-based model to simulate the magnetic hysteresis in performing magnetic alloys suitable for aircraft applications. Starting from a set of measured hysteresis loops, a convenient and effective method to train the network consists to identify the Preisach model and use it for the generation of the training set. The obtained neural network turned out to be particularly robust and able to reproduce the behaviour of the Preisach model with a significant reduction of the computational time. The comparative analysis between the two approaches takes into account different kinds of excitation waveforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信