进化测试的动态优化策略

Xiaoyuan Xie, Liang Shi, Changhai Nie, Yanxiang He, Baowen Xu
{"title":"进化测试的动态优化策略","authors":"Xiaoyuan Xie, Liang Shi, Changhai Nie, Yanxiang He, Baowen Xu","doi":"10.1109/APSEC.2005.6","DOIUrl":null,"url":null,"abstract":"Evolutionary testing (ET) is an efficient technique of automated test case generation. ET uses a kind of metaheuristic search technique, genetic algorithm (GA), to convert the task of test case generation into an optimal problem. The configuration strategies of GA have notable influences upon the performance of ET. In this paper, represent a dynamic self-adaptation strategy for evolutionary structural testing. It monitors evolution process dynamically, detects the symptom of prematurity by analyzing the population, and adjusts the mutation possibility to recover the diversity of the population. The empirical results show that the strategy can greatly improve the performance of the ET in many cases. Besides, some valuable advices are provided for the configuration strategies of ET by the empirical study.","PeriodicalId":359862,"journal":{"name":"12th Asia-Pacific Software Engineering Conference (APSEC'05)","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A dynamic optimization strategy for evolutionary testing\",\"authors\":\"Xiaoyuan Xie, Liang Shi, Changhai Nie, Yanxiang He, Baowen Xu\",\"doi\":\"10.1109/APSEC.2005.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary testing (ET) is an efficient technique of automated test case generation. ET uses a kind of metaheuristic search technique, genetic algorithm (GA), to convert the task of test case generation into an optimal problem. The configuration strategies of GA have notable influences upon the performance of ET. In this paper, represent a dynamic self-adaptation strategy for evolutionary structural testing. It monitors evolution process dynamically, detects the symptom of prematurity by analyzing the population, and adjusts the mutation possibility to recover the diversity of the population. The empirical results show that the strategy can greatly improve the performance of the ET in many cases. Besides, some valuable advices are provided for the configuration strategies of ET by the empirical study.\",\"PeriodicalId\":359862,\"journal\":{\"name\":\"12th Asia-Pacific Software Engineering Conference (APSEC'05)\",\"volume\":\"384 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th Asia-Pacific Software Engineering Conference (APSEC'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC.2005.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Asia-Pacific Software Engineering Conference (APSEC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC.2005.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

进化测试(ET)是一种有效的自动化测试用例生成技术。ET使用一种元启发式搜索技术——遗传算法(GA),将生成测试用例的任务转化为最优问题。遗传算法的配置策略对遗传算法的性能有显著影响。本文提出了一种用于进化结构测试的动态自适应策略。它动态地监测进化过程,通过对种群的分析来发现早熟的症状,并调整突变的可能性来恢复种群的多样性。实证结果表明,在许多情况下,该策略可以极大地提高ET的性能。同时,通过实证研究,对ET的配置策略提出了一些有价值的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic optimization strategy for evolutionary testing
Evolutionary testing (ET) is an efficient technique of automated test case generation. ET uses a kind of metaheuristic search technique, genetic algorithm (GA), to convert the task of test case generation into an optimal problem. The configuration strategies of GA have notable influences upon the performance of ET. In this paper, represent a dynamic self-adaptation strategy for evolutionary structural testing. It monitors evolution process dynamically, detects the symptom of prematurity by analyzing the population, and adjusts the mutation possibility to recover the diversity of the population. The empirical results show that the strategy can greatly improve the performance of the ET in many cases. Besides, some valuable advices are provided for the configuration strategies of ET by the empirical study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信