基于有效边界分析的模糊投资组合选择

Clara Calvo, C. Ivorra, V. Liern
{"title":"基于有效边界分析的模糊投资组合选择","authors":"Clara Calvo, C. Ivorra, V. Liern","doi":"10.1109/ISDA.2011.6121765","DOIUrl":null,"url":null,"abstract":"We present an algorithm for analyzing the geometry of the efficient frontier of the portfolio selection problem with semicontinuous variable and cardinality constraints, and use it as a basis to solve a fuzzy version of the problem, designed to obtain efficient portfolios, in the Markowitz's sense, for which the trade-off between expected return and assumed risk fits better the investor's subjective criteria. We illustrate our proposal with an example solved with LINGO and Mathematica.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy portfolio selection based on the analysis of efficient frontiers\",\"authors\":\"Clara Calvo, C. Ivorra, V. Liern\",\"doi\":\"10.1109/ISDA.2011.6121765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for analyzing the geometry of the efficient frontier of the portfolio selection problem with semicontinuous variable and cardinality constraints, and use it as a basis to solve a fuzzy version of the problem, designed to obtain efficient portfolios, in the Markowitz's sense, for which the trade-off between expected return and assumed risk fits better the investor's subjective criteria. We illustrate our proposal with an example solved with LINGO and Mathematica.\",\"PeriodicalId\":433207,\"journal\":{\"name\":\"2011 11th International Conference on Intelligent Systems Design and Applications\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 11th International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2011.6121765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种算法,用于分析具有半连续变量和基数约束的投资组合选择问题的有效边界的几何形状,并将其作为解决该问题的模糊版本的基础,该问题旨在获得马科维茨意义上的有效投资组合,其中预期收益和承担风险之间的权衡更符合投资者的主观标准。我们用LINGO和Mathematica解决的一个例子来说明我们的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy portfolio selection based on the analysis of efficient frontiers
We present an algorithm for analyzing the geometry of the efficient frontier of the portfolio selection problem with semicontinuous variable and cardinality constraints, and use it as a basis to solve a fuzzy version of the problem, designed to obtain efficient portfolios, in the Markowitz's sense, for which the trade-off between expected return and assumed risk fits better the investor's subjective criteria. We illustrate our proposal with an example solved with LINGO and Mathematica.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信