基于真值的数据集群发现方法的比较

Bogdan Gliwa, Anna Zygmunt, Bartosz Grabski, M. Stojkow, Dorota Żuchowska-Skiba
{"title":"基于真值的数据集群发现方法的比较","authors":"Bogdan Gliwa, Anna Zygmunt, Bartosz Grabski, M. Stojkow, Dorota Żuchowska-Skiba","doi":"10.1109/BESC.2017.8256374","DOIUrl":null,"url":null,"abstract":"Finding social network communities (groups) is fundamental in understanding the properties of the whole network and better understanding human behavior. Many definitions of such structures have been proposed, and therefore, also a lot of algorithms for finding them. These algorithms differ in many aspects and each of them has additionally a number of parameters that need to be set apriori. The article presents a comparison of the results of using different algorithms for datasets that have a ground truth. Moreover, for nondeterministic algorithms, the variability of their results was also analyzed.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of group discovery methods on datasets with ground-truth\",\"authors\":\"Bogdan Gliwa, Anna Zygmunt, Bartosz Grabski, M. Stojkow, Dorota Żuchowska-Skiba\",\"doi\":\"10.1109/BESC.2017.8256374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding social network communities (groups) is fundamental in understanding the properties of the whole network and better understanding human behavior. Many definitions of such structures have been proposed, and therefore, also a lot of algorithms for finding them. These algorithms differ in many aspects and each of them has additionally a number of parameters that need to be set apriori. The article presents a comparison of the results of using different algorithms for datasets that have a ground truth. Moreover, for nondeterministic algorithms, the variability of their results was also analyzed.\",\"PeriodicalId\":142098,\"journal\":{\"name\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC.2017.8256374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

寻找社会网络社区(群体)是理解整个网络属性和更好地理解人类行为的基础。这种结构的许多定义已经被提出,因此,也提出了许多寻找它们的算法。这些算法在许多方面有所不同,并且每个算法都有一些额外的参数需要先验地设置。本文介绍了使用不同算法的数据集具有一个基本真理的结果的比较。此外,对于不确定性算法,还分析了其结果的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of group discovery methods on datasets with ground-truth
Finding social network communities (groups) is fundamental in understanding the properties of the whole network and better understanding human behavior. Many definitions of such structures have been proposed, and therefore, also a lot of algorithms for finding them. These algorithms differ in many aspects and each of them has additionally a number of parameters that need to be set apriori. The article presents a comparison of the results of using different algorithms for datasets that have a ground truth. Moreover, for nondeterministic algorithms, the variability of their results was also analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信