利用附加分类器提高信息提取精度的实验研究

H. Lek, D. Poo
{"title":"利用附加分类器提高信息提取精度的实验研究","authors":"H. Lek, D. Poo","doi":"10.1109/ICMLA.2011.31","DOIUrl":null,"url":null,"abstract":"In this paper, we present an information extraction system and investigate the use of additional classifiers to help improve information extraction performance. We propose a simple idea of training an additional classifier using the same feature configurations on another corpus and then using this new classifier to classify the original dataset. The classification result of this new classifier is then used as a feature to the original classifier. We tested this approach on the CMU seminar announcements and the Austin job posting datasets and obtained results better than all previously reported systems.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"13 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study to Investigate the Use of Additional Classifiers to Improve Information Extraction Accuracy\",\"authors\":\"H. Lek, D. Poo\",\"doi\":\"10.1109/ICMLA.2011.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an information extraction system and investigate the use of additional classifiers to help improve information extraction performance. We propose a simple idea of training an additional classifier using the same feature configurations on another corpus and then using this new classifier to classify the original dataset. The classification result of this new classifier is then used as a feature to the original classifier. We tested this approach on the CMU seminar announcements and the Austin job posting datasets and obtained results better than all previously reported systems.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"13 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个信息提取系统,并研究了使用额外的分类器来帮助提高信息提取性能。我们提出了一个简单的想法,即在另一个语料库上使用相同的特征配置训练一个额外的分类器,然后使用这个新的分类器对原始数据集进行分类。然后将新分类器的分类结果作为原始分类器的特征。我们在CMU研讨会公告和Austin职位发布数据集上测试了这种方法,并获得了比之前报道的所有系统更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study to Investigate the Use of Additional Classifiers to Improve Information Extraction Accuracy
In this paper, we present an information extraction system and investigate the use of additional classifiers to help improve information extraction performance. We propose a simple idea of training an additional classifier using the same feature configurations on another corpus and then using this new classifier to classify the original dataset. The classification result of this new classifier is then used as a feature to the original classifier. We tested this approach on the CMU seminar announcements and the Austin job posting datasets and obtained results better than all previously reported systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信