在线讨论中的网络威胁预警

Anna Sapienza, Alessandro Bessi, Saranya Damodaran, P. Shakarian, Kristina Lerman, Emilio Ferrara
{"title":"在线讨论中的网络威胁预警","authors":"Anna Sapienza, Alessandro Bessi, Saranya Damodaran, P. Shakarian, Kristina Lerman, Emilio Ferrara","doi":"10.1109/ICDMW.2017.94","DOIUrl":null,"url":null,"abstract":"We introduce a system for automatically generating warnings of imminent or current cyber-threats. Our system leverages the communication of malicious actors on the darkweb, as well as activity of cyber security experts on social media platforms like Twitter. In a time period between September, 2016 and January, 2017, our method generated 661 alerts of which about 84% were relevant to current or imminent cyber-threats. In the paper, we first illustrate the rationale and workflow of our system, then we measure its performance. Our analysis is enriched by two case studies: the first shows how the method could predict DDoS attacks, and how it would have allowed organizations to prepare for the Mirai attacks that caused widespread disruption in October 2016. Second, we discuss the method's timely identification of various instances of data breaches.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Early Warnings of Cyber Threats in Online Discussions\",\"authors\":\"Anna Sapienza, Alessandro Bessi, Saranya Damodaran, P. Shakarian, Kristina Lerman, Emilio Ferrara\",\"doi\":\"10.1109/ICDMW.2017.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a system for automatically generating warnings of imminent or current cyber-threats. Our system leverages the communication of malicious actors on the darkweb, as well as activity of cyber security experts on social media platforms like Twitter. In a time period between September, 2016 and January, 2017, our method generated 661 alerts of which about 84% were relevant to current or imminent cyber-threats. In the paper, we first illustrate the rationale and workflow of our system, then we measure its performance. Our analysis is enriched by two case studies: the first shows how the method could predict DDoS attacks, and how it would have allowed organizations to prepare for the Mirai attacks that caused widespread disruption in October 2016. Second, we discuss the method's timely identification of various instances of data breaches.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

我们引入了一个系统,用于自动生成迫在眉睫或当前网络威胁的警告。我们的系统利用了暗网上恶意行为者的交流,以及网络安全专家在Twitter等社交媒体平台上的活动。在2016年9月至2017年1月期间,我们的方法产生了661次警报,其中约84%与当前或迫在眉睫的网络威胁相关。在本文中,我们首先说明了我们的系统的基本原理和工作流程,然后我们测量了它的性能。我们的分析通过两个案例研究得到了丰富:第一个案例研究展示了该方法如何预测DDoS攻击,以及它如何让组织为2016年10月造成大范围中断的Mirai攻击做好准备。其次,我们讨论了该方法对各种数据泄露实例的及时识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early Warnings of Cyber Threats in Online Discussions
We introduce a system for automatically generating warnings of imminent or current cyber-threats. Our system leverages the communication of malicious actors on the darkweb, as well as activity of cyber security experts on social media platforms like Twitter. In a time period between September, 2016 and January, 2017, our method generated 661 alerts of which about 84% were relevant to current or imminent cyber-threats. In the paper, we first illustrate the rationale and workflow of our system, then we measure its performance. Our analysis is enriched by two case studies: the first shows how the method could predict DDoS attacks, and how it would have allowed organizations to prepare for the Mirai attacks that caused widespread disruption in October 2016. Second, we discuss the method's timely identification of various instances of data breaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信