特定领域的Web文档重排序算法

Grace Zhao, Xiaowen Zhang
{"title":"特定领域的Web文档重排序算法","authors":"Grace Zhao, Xiaowen Zhang","doi":"10.1109/IIAI-AAI.2017.125","DOIUrl":null,"url":null,"abstract":"In order to build a domain-specific knowledge hub for learning on the web, the web resources crawled by generic search engines will need to be sifted and sorted before use. We propose a re-ranking algorithm that recognizes the highly domain relevant web data to feed in the domain knowledge learning hub. The algorithm studies the structure and semantics of the domain ontology (graph) and constructs computational relations among nodes. Through mining matching terms between ontology dictionary and the textual content (text, metadata) of the retrieved documents crawled by some credited web search engines, we calculate three-dimensional information scores - distance, direction, and attributes of each document and subsequently re-rank the retrieved documents to provide learners with more meaningful knowledge in the domain space they embrace.","PeriodicalId":281712,"journal":{"name":"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Domain-Specific Web Document Re-ranking Algorithm\",\"authors\":\"Grace Zhao, Xiaowen Zhang\",\"doi\":\"10.1109/IIAI-AAI.2017.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to build a domain-specific knowledge hub for learning on the web, the web resources crawled by generic search engines will need to be sifted and sorted before use. We propose a re-ranking algorithm that recognizes the highly domain relevant web data to feed in the domain knowledge learning hub. The algorithm studies the structure and semantics of the domain ontology (graph) and constructs computational relations among nodes. Through mining matching terms between ontology dictionary and the textual content (text, metadata) of the retrieved documents crawled by some credited web search engines, we calculate three-dimensional information scores - distance, direction, and attributes of each document and subsequently re-rank the retrieved documents to provide learners with more meaningful knowledge in the domain space they embrace.\",\"PeriodicalId\":281712,\"journal\":{\"name\":\"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2017.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2017.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了在网络上建立一个特定领域的知识中心,通用搜索引擎抓取的网络资源需要在使用前进行筛选和排序。我们提出了一种重新排序算法,该算法可以识别高度领域相关的web数据,并将其馈送到领域知识学习中心。该算法研究领域本体(图)的结构和语义,构建节点间的计算关系。通过挖掘本体字典与某些知名网络搜索引擎抓取的检索文档的文本内容(文本、元数据)之间的匹配项,计算出每个文档的三维信息分数——距离、方向和属性,并随后对检索文档进行重新排序,为学习者提供他们所接受的领域空间中更有意义的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Domain-Specific Web Document Re-ranking Algorithm
In order to build a domain-specific knowledge hub for learning on the web, the web resources crawled by generic search engines will need to be sifted and sorted before use. We propose a re-ranking algorithm that recognizes the highly domain relevant web data to feed in the domain knowledge learning hub. The algorithm studies the structure and semantics of the domain ontology (graph) and constructs computational relations among nodes. Through mining matching terms between ontology dictionary and the textual content (text, metadata) of the retrieved documents crawled by some credited web search engines, we calculate three-dimensional information scores - distance, direction, and attributes of each document and subsequently re-rank the retrieved documents to provide learners with more meaningful knowledge in the domain space they embrace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信