Amela Drobo, L. S. Becirovic, L. G. Pokvic, Lucija Dzambo, E. Becic, A. Badnjević, Majda Dogic, Alisa Smajovic
{"title":"人工神经网络在丙型肝炎诊断中的应用","authors":"Amela Drobo, L. S. Becirovic, L. G. Pokvic, Lucija Dzambo, E. Becic, A. Badnjević, Majda Dogic, Alisa Smajovic","doi":"10.1109/ICAT54566.2022.9811126","DOIUrl":null,"url":null,"abstract":"Hepatitis C is an inflammatory condition of the liver caused by the hepatitis C virus. Diagnosis of the disease itself is difficult because the incubation period is long, often the disease is initially without some characteristic symptoms, but also due to a lack of laboratory methods. Artificial intelligence is increasingly being used nowadays to make it easier and faster to assess the illness. As hepatitis C is a rising healthcare burden it is of utmost importance to construct effective and reliable screening methods. As AI has already proven useful for diagnosis of a variety of conditions based on clinical parameters, this study focuses on the application of artificial neural network (ANN) for hepatitis C diagnosis. In this study, a database of 1000 respondents divided into two groups was used to develop the ANN: healthy (n = 200) and sick (n = 800). Monitoring parameters were: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin, acetylcholinesterase and anti-HCV antibodies. The overall accuracy of the developed ANN was 97,78%, which indicates that the potential of artificial intelligence in diagnosing hepatitis C is enormous, and in the future, attention should be paid to the development of new systems with as much data as possible.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of artificial neural networks in diagnosis of Hepatitis C\",\"authors\":\"Amela Drobo, L. S. Becirovic, L. G. Pokvic, Lucija Dzambo, E. Becic, A. Badnjević, Majda Dogic, Alisa Smajovic\",\"doi\":\"10.1109/ICAT54566.2022.9811126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hepatitis C is an inflammatory condition of the liver caused by the hepatitis C virus. Diagnosis of the disease itself is difficult because the incubation period is long, often the disease is initially without some characteristic symptoms, but also due to a lack of laboratory methods. Artificial intelligence is increasingly being used nowadays to make it easier and faster to assess the illness. As hepatitis C is a rising healthcare burden it is of utmost importance to construct effective and reliable screening methods. As AI has already proven useful for diagnosis of a variety of conditions based on clinical parameters, this study focuses on the application of artificial neural network (ANN) for hepatitis C diagnosis. In this study, a database of 1000 respondents divided into two groups was used to develop the ANN: healthy (n = 200) and sick (n = 800). Monitoring parameters were: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin, acetylcholinesterase and anti-HCV antibodies. The overall accuracy of the developed ANN was 97,78%, which indicates that the potential of artificial intelligence in diagnosing hepatitis C is enormous, and in the future, attention should be paid to the development of new systems with as much data as possible.\",\"PeriodicalId\":414786,\"journal\":{\"name\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT54566.2022.9811126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of artificial neural networks in diagnosis of Hepatitis C
Hepatitis C is an inflammatory condition of the liver caused by the hepatitis C virus. Diagnosis of the disease itself is difficult because the incubation period is long, often the disease is initially without some characteristic symptoms, but also due to a lack of laboratory methods. Artificial intelligence is increasingly being used nowadays to make it easier and faster to assess the illness. As hepatitis C is a rising healthcare burden it is of utmost importance to construct effective and reliable screening methods. As AI has already proven useful for diagnosis of a variety of conditions based on clinical parameters, this study focuses on the application of artificial neural network (ANN) for hepatitis C diagnosis. In this study, a database of 1000 respondents divided into two groups was used to develop the ANN: healthy (n = 200) and sick (n = 800). Monitoring parameters were: albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin, acetylcholinesterase and anti-HCV antibodies. The overall accuracy of the developed ANN was 97,78%, which indicates that the potential of artificial intelligence in diagnosing hepatitis C is enormous, and in the future, attention should be paid to the development of new systems with as much data as possible.