{"title":"测试市场对审计师变更文件的反应:机器学习分类器的比较","authors":"Richard Holowczak , David Louton , Hakan Saraoglu","doi":"10.1016/j.jfds.2018.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The use of textual information contained in company filings with the Securities Exchange Commission (SEC), including annual reports on Form 10-K, quarterly reports on Form 10-Q, and current reports on Form 8-K, has gained the increased attention of finance and accounting researchers. In this paper we use a set of machine learning methods to predict the market response to changes in a firm's auditor as reported in public filings. We vectorize the text of 8-K filings to test whether the resulting feature matrix can explain the sign of the market response to the filing. Specifically, using classification algorithms and a sample consisting of the Item 4.01 text of 8-K documents, which provides information on changes in auditors of companies that are registered with the SEC, we predict the sign of the cumulative abnormal return (CAR) around 8-K filing dates. We report the correct classification performance and time efficiency of the classification algorithms. Our results show some improvement over the naïve classification method.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"5 1","pages":"Pages 48-59"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jfds.2018.08.001","citationCount":"5","resultStr":"{\"title\":\"Testing market response to auditor change filings: A comparison of machine learning classifiers\",\"authors\":\"Richard Holowczak , David Louton , Hakan Saraoglu\",\"doi\":\"10.1016/j.jfds.2018.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of textual information contained in company filings with the Securities Exchange Commission (SEC), including annual reports on Form 10-K, quarterly reports on Form 10-Q, and current reports on Form 8-K, has gained the increased attention of finance and accounting researchers. In this paper we use a set of machine learning methods to predict the market response to changes in a firm's auditor as reported in public filings. We vectorize the text of 8-K filings to test whether the resulting feature matrix can explain the sign of the market response to the filing. Specifically, using classification algorithms and a sample consisting of the Item 4.01 text of 8-K documents, which provides information on changes in auditors of companies that are registered with the SEC, we predict the sign of the cumulative abnormal return (CAR) around 8-K filing dates. We report the correct classification performance and time efficiency of the classification algorithms. Our results show some improvement over the naïve classification method.</p></div>\",\"PeriodicalId\":36340,\"journal\":{\"name\":\"Journal of Finance and Data Science\",\"volume\":\"5 1\",\"pages\":\"Pages 48-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jfds.2018.08.001\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405918818300096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918818300096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Testing market response to auditor change filings: A comparison of machine learning classifiers
The use of textual information contained in company filings with the Securities Exchange Commission (SEC), including annual reports on Form 10-K, quarterly reports on Form 10-Q, and current reports on Form 8-K, has gained the increased attention of finance and accounting researchers. In this paper we use a set of machine learning methods to predict the market response to changes in a firm's auditor as reported in public filings. We vectorize the text of 8-K filings to test whether the resulting feature matrix can explain the sign of the market response to the filing. Specifically, using classification algorithms and a sample consisting of the Item 4.01 text of 8-K documents, which provides information on changes in auditors of companies that are registered with the SEC, we predict the sign of the cumulative abnormal return (CAR) around 8-K filing dates. We report the correct classification performance and time efficiency of the classification algorithms. Our results show some improvement over the naïve classification method.