{"title":"无加权图的层次聚类","authors":"Svein Høgemo, C. Paul, J. A. Telle","doi":"10.4230/LIPIcs.MFCS.2020.47","DOIUrl":null,"url":null,"abstract":"We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity graph under the recently introduced Dasgupta objective function. We introduce a proof technique, called the normalization procedure, that takes any such clustering of a graph $G$ and iteratively improves it until a desired target clustering of G is reached. We use this technique to show both a negative and a positive complexity result. Firstly, we show that in general the problem is NP-complete. Secondly, we consider min-well-behaved graphs, which are graphs $H$ having the property that for any $k$ the graph $H(k)$ being the join of $k$ copies of $H$ has an optimal hierarchical clustering that splits each copy of $H$ in the same optimal way. To optimally cluster such a graph $H(k)$ we thus only need to optimally cluster the smaller graph $H$. Co-bipartite graphs are min-well-behaved, but otherwise they seem to be scarce. We use the normalization procedure to show that also the cycle on 6 vertices is min-well-behaved.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical Clusterings of Unweighted Graphs\",\"authors\":\"Svein Høgemo, C. Paul, J. A. Telle\",\"doi\":\"10.4230/LIPIcs.MFCS.2020.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity graph under the recently introduced Dasgupta objective function. We introduce a proof technique, called the normalization procedure, that takes any such clustering of a graph $G$ and iteratively improves it until a desired target clustering of G is reached. We use this technique to show both a negative and a positive complexity result. Firstly, we show that in general the problem is NP-complete. Secondly, we consider min-well-behaved graphs, which are graphs $H$ having the property that for any $k$ the graph $H(k)$ being the join of $k$ copies of $H$ has an optimal hierarchical clustering that splits each copy of $H$ in the same optimal way. To optimally cluster such a graph $H(k)$ we thus only need to optimally cluster the smaller graph $H$. Co-bipartite graphs are min-well-behaved, but otherwise they seem to be scarce. We use the normalization procedure to show that also the cycle on 6 vertices is min-well-behaved.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2020.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2020.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity graph under the recently introduced Dasgupta objective function. We introduce a proof technique, called the normalization procedure, that takes any such clustering of a graph $G$ and iteratively improves it until a desired target clustering of G is reached. We use this technique to show both a negative and a positive complexity result. Firstly, we show that in general the problem is NP-complete. Secondly, we consider min-well-behaved graphs, which are graphs $H$ having the property that for any $k$ the graph $H(k)$ being the join of $k$ copies of $H$ has an optimal hierarchical clustering that splits each copy of $H$ in the same optimal way. To optimally cluster such a graph $H(k)$ we thus only need to optimally cluster the smaller graph $H$. Co-bipartite graphs are min-well-behaved, but otherwise they seem to be scarce. We use the normalization procedure to show that also the cycle on 6 vertices is min-well-behaved.