基于Sergeev和Kvasov对角法的多变量函数连续全局优化

Vladislav V. Zabotin, Pavel A. Chernyshevskij
{"title":"基于Sergeev和Kvasov对角法的多变量函数连续全局优化","authors":"Vladislav V. Zabotin, Pavel A. Chernyshevskij","doi":"10.15507/2079-6900.24.202204.399-418","DOIUrl":null,"url":null,"abstract":"Abstract. One of modern global optimization algorithms is method of Strongin and Piyavskii modified by Sergeev and Kvasov diagonal approach. In recent paper we propose an extension of this approach to continuous multivariable functions defined on the multidimensional parallelepiped. It is known that Sergeev and Kvasov method applies only to a Lipschitz continuous function though it effectively extends one-dimensional algorithm to multidimensional case. So authors modify We modify mentioned method to a continuous functions using introduced by Vanderbei ε-Lipschitz property that generalizes conventional Lipschitz inequality. Vanderbei proved that a real valued function is uniformly continuous on a convex domain if and only if it is ε-Lipschitz. Because multidimensional parallelepiped is a convex compact set, we demand objective function to be only continuous on a search domain. We describe extended Strongin’s and Piyavskii’s methods in the Sergeev and Kvasov modification and prove the sufficient conditions for the convergence. As an example of proposed method’s application, at the end of this article we show numerical optimization results of different continuous but not Lipschitz functions using three known partition strategies: “partition on 2”, “partition on 2N” and “effective”. For the first two of them we present formulas for computing a new iteration point and for recalculating the ε-Lipschitz constant estimate. We also show algorithm modification that allows to find a new search point on any algorithm’s step.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach\",\"authors\":\"Vladislav V. Zabotin, Pavel A. Chernyshevskij\",\"doi\":\"10.15507/2079-6900.24.202204.399-418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. One of modern global optimization algorithms is method of Strongin and Piyavskii modified by Sergeev and Kvasov diagonal approach. In recent paper we propose an extension of this approach to continuous multivariable functions defined on the multidimensional parallelepiped. It is known that Sergeev and Kvasov method applies only to a Lipschitz continuous function though it effectively extends one-dimensional algorithm to multidimensional case. So authors modify We modify mentioned method to a continuous functions using introduced by Vanderbei ε-Lipschitz property that generalizes conventional Lipschitz inequality. Vanderbei proved that a real valued function is uniformly continuous on a convex domain if and only if it is ε-Lipschitz. Because multidimensional parallelepiped is a convex compact set, we demand objective function to be only continuous on a search domain. We describe extended Strongin’s and Piyavskii’s methods in the Sergeev and Kvasov modification and prove the sufficient conditions for the convergence. As an example of proposed method’s application, at the end of this article we show numerical optimization results of different continuous but not Lipschitz functions using three known partition strategies: “partition on 2”, “partition on 2N” and “effective”. For the first two of them we present formulas for computing a new iteration point and for recalculating the ε-Lipschitz constant estimate. We also show algorithm modification that allows to find a new search point on any algorithm’s step.\",\"PeriodicalId\":273445,\"journal\":{\"name\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/2079-6900.24.202204.399-418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.24.202204.399-418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要现代全局优化算法之一是由Sergeev和Kvasov对角法修正的Strongin和Piyavskii方法。本文将此方法推广到多维平行六面体上的连续多变量函数。已知Sergeev和Kvasov方法虽然有效地将一维算法扩展到多维情况,但只适用于Lipschitz连续函数。利用推广常规Lipschitz不等式的Vanderbei ε-Lipschitz性质将上述方法修正为连续函数。Vanderbei证明了实值函数在凸域上一致连续当且仅当它是ε-Lipschitz。由于多维平行六面体是凸紧集,我们要求目标函数只在一个搜索域上连续。我们描述了在Sergeev和Kvasov修正中的扩展Strongin和Piyavskii方法,并证明了收敛的充分条件。作为该方法应用的一个例子,在本文的最后,我们展示了不同的连续而非Lipschitz函数使用三种已知的划分策略的数值优化结果:“2上划分”,“2N上划分”和“有效”。对于前两种情况,我们给出了计算新的迭代点和重新计算ε-Lipschitz常数估计的公式。我们还展示了算法的修改,允许在任何算法的步骤上找到一个新的搜索点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach
Abstract. One of modern global optimization algorithms is method of Strongin and Piyavskii modified by Sergeev and Kvasov diagonal approach. In recent paper we propose an extension of this approach to continuous multivariable functions defined on the multidimensional parallelepiped. It is known that Sergeev and Kvasov method applies only to a Lipschitz continuous function though it effectively extends one-dimensional algorithm to multidimensional case. So authors modify We modify mentioned method to a continuous functions using introduced by Vanderbei ε-Lipschitz property that generalizes conventional Lipschitz inequality. Vanderbei proved that a real valued function is uniformly continuous on a convex domain if and only if it is ε-Lipschitz. Because multidimensional parallelepiped is a convex compact set, we demand objective function to be only continuous on a search domain. We describe extended Strongin’s and Piyavskii’s methods in the Sergeev and Kvasov modification and prove the sufficient conditions for the convergence. As an example of proposed method’s application, at the end of this article we show numerical optimization results of different continuous but not Lipschitz functions using three known partition strategies: “partition on 2”, “partition on 2N” and “effective”. For the first two of them we present formulas for computing a new iteration point and for recalculating the ε-Lipschitz constant estimate. We also show algorithm modification that allows to find a new search point on any algorithm’s step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信