基于内容的图像检索中基于自监督卷积自编码器的特征提取

I. Siradjuddin, Wrida Adi Wardana, M. K. Sophan
{"title":"基于内容的图像检索中基于自监督卷积自编码器的特征提取","authors":"I. Siradjuddin, Wrida Adi Wardana, M. K. Sophan","doi":"10.1109/ICICoS48119.2019.8982468","DOIUrl":null,"url":null,"abstract":"This paper presents Autoencoder using Convolutional Neural Network for feature extraction in the Content-based Image Retrieval. Two type of layers are in the convolutional autoencoder architecture, they are encoder and decoder layer. The encoder layer extracts the important representation of the image using feature learning capability of the convolutional neural network, and reduces the dimension of the image. The decode layer reconstructs the representation, such that, the output of the autoencoder is close to the input data. The important representation of the image from the encoder layer in convolutional autoencoder, is used as the extracted features in the content-based image retrieval. Similarity distance between the extracted feature of the query image and the database is calculated to retrieve relevant images. The images in Corel dataset are used for the experiment and tested using the proposed model. The experiments show that the extracted features are representable for the images, and can be used to retrieve relevant images in the content-based image retrieval.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Feature Extraction using Self-Supervised Convolutional Autoencoder for Content based Image Retrieval\",\"authors\":\"I. Siradjuddin, Wrida Adi Wardana, M. K. Sophan\",\"doi\":\"10.1109/ICICoS48119.2019.8982468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Autoencoder using Convolutional Neural Network for feature extraction in the Content-based Image Retrieval. Two type of layers are in the convolutional autoencoder architecture, they are encoder and decoder layer. The encoder layer extracts the important representation of the image using feature learning capability of the convolutional neural network, and reduces the dimension of the image. The decode layer reconstructs the representation, such that, the output of the autoencoder is close to the input data. The important representation of the image from the encoder layer in convolutional autoencoder, is used as the extracted features in the content-based image retrieval. Similarity distance between the extracted feature of the query image and the database is calculated to retrieve relevant images. The images in Corel dataset are used for the experiment and tested using the proposed model. The experiments show that the extracted features are representable for the images, and can be used to retrieve relevant images in the content-based image retrieval.\",\"PeriodicalId\":105407,\"journal\":{\"name\":\"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICoS48119.2019.8982468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种基于卷积神经网络的自编码器,用于基于内容的图像检索中的特征提取。卷积自编码器结构中有两种层,编码器层和解码器层。编码器层利用卷积神经网络的特征学习能力提取图像的重要表征,并对图像进行降维处理。解码层重构该表示,使自编码器的输出与输入数据接近。卷积自编码器中编码层对图像的重要表示,被用作基于内容的图像检索中提取的特征。计算查询图像提取的特征与数据库的相似距离,检索相关图像。使用Corel数据集中的图像进行实验,并使用所提出的模型进行测试。实验表明,提取的特征对图像具有可表示性,可用于基于内容的图像检索中检索相关图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Extraction using Self-Supervised Convolutional Autoencoder for Content based Image Retrieval
This paper presents Autoencoder using Convolutional Neural Network for feature extraction in the Content-based Image Retrieval. Two type of layers are in the convolutional autoencoder architecture, they are encoder and decoder layer. The encoder layer extracts the important representation of the image using feature learning capability of the convolutional neural network, and reduces the dimension of the image. The decode layer reconstructs the representation, such that, the output of the autoencoder is close to the input data. The important representation of the image from the encoder layer in convolutional autoencoder, is used as the extracted features in the content-based image retrieval. Similarity distance between the extracted feature of the query image and the database is calculated to retrieve relevant images. The images in Corel dataset are used for the experiment and tested using the proposed model. The experiments show that the extracted features are representable for the images, and can be used to retrieve relevant images in the content-based image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信