递归正则化学习分层特征对推荐的影响

Jie Yang, Zhu Sun, A. Bozzon, Jie Zhang
{"title":"递归正则化学习分层特征对推荐的影响","authors":"Jie Yang, Zhu Sun, A. Bozzon, Jie Zhang","doi":"10.1145/2959100.2959159","DOIUrl":null,"url":null,"abstract":"Existing feature-based recommendation methods incorporate auxiliary features about users and/or items to address data sparsity and cold start issues. They mainly consider features that are organized in a flat structure, where features are independent and in a same level. However, auxiliary features are often organized in rich knowledge structures (e.g. hierarchy) to describe their relationships. In this paper, we propose a novel matrix factorization framework with recursive regularization -- ReMF, which jointly models and learns the influence of hierarchically-organized features on user-item interactions, thus to improve recommendation accuracy. It also provides characterization of how different features in the hierarchy co-influence the modeling of user-item interactions. Empirical results on real-world data sets demonstrate that ReMF consistently outperforms state-of-the-art feature-based recommendation methods.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Learning Hierarchical Feature Influence for Recommendation by Recursive Regularization\",\"authors\":\"Jie Yang, Zhu Sun, A. Bozzon, Jie Zhang\",\"doi\":\"10.1145/2959100.2959159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing feature-based recommendation methods incorporate auxiliary features about users and/or items to address data sparsity and cold start issues. They mainly consider features that are organized in a flat structure, where features are independent and in a same level. However, auxiliary features are often organized in rich knowledge structures (e.g. hierarchy) to describe their relationships. In this paper, we propose a novel matrix factorization framework with recursive regularization -- ReMF, which jointly models and learns the influence of hierarchically-organized features on user-item interactions, thus to improve recommendation accuracy. It also provides characterization of how different features in the hierarchy co-influence the modeling of user-item interactions. Empirical results on real-world data sets demonstrate that ReMF consistently outperforms state-of-the-art feature-based recommendation methods.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

现有的基于特征的推荐方法包含了关于用户和/或项目的辅助特征,以解决数据稀疏性和冷启动问题。它们主要考虑在平面结构中组织的特征,在平面结构中,特征是独立的,处于同一层次。然而,辅助特征通常被组织成丰富的知识结构(如层次结构)来描述它们之间的关系。在本文中,我们提出了一种新的递归正则化矩阵分解框架——ReMF,它联合建模和学习分层组织的特征对用户-物品交互的影响,从而提高推荐的准确性。它还描述了层次结构中的不同特征如何共同影响用户-项目交互的建模。现实世界数据集的实证结果表明,ReMF始终优于最先进的基于特征的推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Hierarchical Feature Influence for Recommendation by Recursive Regularization
Existing feature-based recommendation methods incorporate auxiliary features about users and/or items to address data sparsity and cold start issues. They mainly consider features that are organized in a flat structure, where features are independent and in a same level. However, auxiliary features are often organized in rich knowledge structures (e.g. hierarchy) to describe their relationships. In this paper, we propose a novel matrix factorization framework with recursive regularization -- ReMF, which jointly models and learns the influence of hierarchically-organized features on user-item interactions, thus to improve recommendation accuracy. It also provides characterization of how different features in the hierarchy co-influence the modeling of user-item interactions. Empirical results on real-world data sets demonstrate that ReMF consistently outperforms state-of-the-art feature-based recommendation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信