群环群中的涌现行为

Seung‐Yeal Ha, Hansol Park
{"title":"群环群中的涌现行为","authors":"Seung‐Yeal Ha, Hansol Park","doi":"10.1090/QAM/1595","DOIUrl":null,"url":null,"abstract":"We present a first-order aggregation model on a group ring, and study its asymptotic dynamics. In a positive coupling strength regime, we show that the flow generated by the proposed model tends to an equilibrium manifold asymptotically. For this, we introduce a Lyapunov functional which is non-increasing along the flow, and using the temporal decay of the nonlinear functional and the LaSalle invariance principle, we show that the flow converges toward an equilibrium manifold asymptotically. We also show that the structure of an equilibrium manifold is strongly dependent on the structure of an underlying group.","PeriodicalId":407889,"journal":{"name":"arXiv: Dynamical Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Emergent behaviors in group ring flocks\",\"authors\":\"Seung‐Yeal Ha, Hansol Park\",\"doi\":\"10.1090/QAM/1595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a first-order aggregation model on a group ring, and study its asymptotic dynamics. In a positive coupling strength regime, we show that the flow generated by the proposed model tends to an equilibrium manifold asymptotically. For this, we introduce a Lyapunov functional which is non-increasing along the flow, and using the temporal decay of the nonlinear functional and the LaSalle invariance principle, we show that the flow converges toward an equilibrium manifold asymptotically. We also show that the structure of an equilibrium manifold is strongly dependent on the structure of an underlying group.\",\"PeriodicalId\":407889,\"journal\":{\"name\":\"arXiv: Dynamical Systems\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/QAM/1595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/QAM/1595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给出了群环上的一阶聚集模型,并研究了它的渐近动力学。在正耦合强度区,我们证明了由该模型产生的流渐近地趋向于平衡流形。为此,我们引入了沿流不增加的Lyapunov泛函,并利用非线性泛函的时间衰减和LaSalle不变性原理,证明了流渐近收敛于平衡流形。我们还证明了平衡流形的结构强烈依赖于底层群的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergent behaviors in group ring flocks
We present a first-order aggregation model on a group ring, and study its asymptotic dynamics. In a positive coupling strength regime, we show that the flow generated by the proposed model tends to an equilibrium manifold asymptotically. For this, we introduce a Lyapunov functional which is non-increasing along the flow, and using the temporal decay of the nonlinear functional and the LaSalle invariance principle, we show that the flow converges toward an equilibrium manifold asymptotically. We also show that the structure of an equilibrium manifold is strongly dependent on the structure of an underlying group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信