Yulong Yan, Haoming Chu, Xin Chen, Yi Jin, Y. Huan, Lirong Zheng, Zhuo Zou
{"title":"基于图的脉冲神经网络训练时空反向传播","authors":"Yulong Yan, Haoming Chu, Xin Chen, Yi Jin, Y. Huan, Lirong Zheng, Zhuo Zou","doi":"10.1109/AICAS51828.2021.9458461","DOIUrl":null,"url":null,"abstract":"Dedicated hardware for spiking neural networks (SNN) reduces energy consumption with spike-driven computing. This paper proposes a graph-based spatio-temporal backpropagation (G-STBP) to train SNN, aiming to enhance spike sparsity for energy efficiency, while ensuring the accuracy. A differentiable leaky integrate-and-fire (LIF) model is suggested to establish the backpropagation path. The sparse regularization is proposed to reduce the spike firing rate with a guaranteed accuracy. GSTBP enables training in any network topologies thanks to graph representation. A recurrent network is demonstrated with spike-sparse rank order coding. The experimental result on rank order coded MNIST shows that the recurrent SNN trained by G-STBP achieves the accuracy of 97.3% using 392 spikes per inference.","PeriodicalId":173204,"journal":{"name":"2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"55 35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Graph-Based Spatio-Temporal Backpropagation for Training Spiking Neural Networks\",\"authors\":\"Yulong Yan, Haoming Chu, Xin Chen, Yi Jin, Y. Huan, Lirong Zheng, Zhuo Zou\",\"doi\":\"10.1109/AICAS51828.2021.9458461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dedicated hardware for spiking neural networks (SNN) reduces energy consumption with spike-driven computing. This paper proposes a graph-based spatio-temporal backpropagation (G-STBP) to train SNN, aiming to enhance spike sparsity for energy efficiency, while ensuring the accuracy. A differentiable leaky integrate-and-fire (LIF) model is suggested to establish the backpropagation path. The sparse regularization is proposed to reduce the spike firing rate with a guaranteed accuracy. GSTBP enables training in any network topologies thanks to graph representation. A recurrent network is demonstrated with spike-sparse rank order coding. The experimental result on rank order coded MNIST shows that the recurrent SNN trained by G-STBP achieves the accuracy of 97.3% using 392 spikes per inference.\",\"PeriodicalId\":173204,\"journal\":{\"name\":\"2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"55 35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS51828.2021.9458461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS51828.2021.9458461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph-Based Spatio-Temporal Backpropagation for Training Spiking Neural Networks
Dedicated hardware for spiking neural networks (SNN) reduces energy consumption with spike-driven computing. This paper proposes a graph-based spatio-temporal backpropagation (G-STBP) to train SNN, aiming to enhance spike sparsity for energy efficiency, while ensuring the accuracy. A differentiable leaky integrate-and-fire (LIF) model is suggested to establish the backpropagation path. The sparse regularization is proposed to reduce the spike firing rate with a guaranteed accuracy. GSTBP enables training in any network topologies thanks to graph representation. A recurrent network is demonstrated with spike-sparse rank order coding. The experimental result on rank order coded MNIST shows that the recurrent SNN trained by G-STBP achieves the accuracy of 97.3% using 392 spikes per inference.