实现大型蛋白质折叠轨迹数据集的原位数据分析

Boyu Zhang, Trilce Estrada, Pietro Cicotti, M. Taufer
{"title":"实现大型蛋白质折叠轨迹数据集的原位数据分析","authors":"Boyu Zhang, Trilce Estrada, Pietro Cicotti, M. Taufer","doi":"10.1109/IPDPS.2014.33","DOIUrl":null,"url":null,"abstract":"This paper presents a one-pass, distributed method that enables in-situ data analysis for large protein folding trajectory datasets by executing sufficiently fast, avoiding moving trajectory data, and limiting the memory usage. First, the method extracts the geometric shape features of each protein conformation in parallel. Then, it classifies sets of consecutive conformations into meta-stable and transition stages using a probabilistic hierarchical clustering method. Lastly, it rebuilds the global knowledge necessary for the intraand inter-trajectory analysis through a reduction operation. The comparison of our method with a traditional approach for a villin headpiece sub domain shows that our method generates significant improvements in execution time, memory usage, and data movement. Specifically, to analyze the same trajectory consisting of 20,000 protein conformations, our method runs in 41.5 seconds while the traditional approach takes approximately 3 hours, uses 6.9MB memory per core while the traditional method uses 16GB on one single node where the analysis is performed, and communicates only 4.4KB while the traditional method moves the entire dataset of 539MB. The overall results in this paper support our claim that our method is suitable for in-situ data analysis of folding trajectories.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Enabling In-Situ Data Analysis for Large Protein-Folding Trajectory Datasets\",\"authors\":\"Boyu Zhang, Trilce Estrada, Pietro Cicotti, M. Taufer\",\"doi\":\"10.1109/IPDPS.2014.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a one-pass, distributed method that enables in-situ data analysis for large protein folding trajectory datasets by executing sufficiently fast, avoiding moving trajectory data, and limiting the memory usage. First, the method extracts the geometric shape features of each protein conformation in parallel. Then, it classifies sets of consecutive conformations into meta-stable and transition stages using a probabilistic hierarchical clustering method. Lastly, it rebuilds the global knowledge necessary for the intraand inter-trajectory analysis through a reduction operation. The comparison of our method with a traditional approach for a villin headpiece sub domain shows that our method generates significant improvements in execution time, memory usage, and data movement. Specifically, to analyze the same trajectory consisting of 20,000 protein conformations, our method runs in 41.5 seconds while the traditional approach takes approximately 3 hours, uses 6.9MB memory per core while the traditional method uses 16GB on one single node where the analysis is performed, and communicates only 4.4KB while the traditional method moves the entire dataset of 539MB. The overall results in this paper support our claim that our method is suitable for in-situ data analysis of folding trajectories.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种一次性、分布式的方法,通过执行足够快、避免移动轨迹数据和限制内存使用,实现了对大型蛋白质折叠轨迹数据集的原位数据分析。该方法首先并行提取每个蛋白质构象的几何形状特征;然后,利用概率层次聚类方法将连续构象集划分为亚稳定和过渡阶段;最后,通过约简运算重建轨迹内和轨迹间分析所需的全局知识。将我们的方法与传统方法进行vilin headpiece子域的比较表明,我们的方法在执行时间、内存使用和数据移动方面产生了显著的改进。具体来说,为了分析由2万个蛋白质构象组成的相同轨迹,我们的方法运行时间为41.5秒,而传统方法大约需要3小时;每核使用6.9MB内存,而传统方法在单个节点上使用16GB内存进行分析;通信仅4.4KB,而传统方法移动整个数据集539MB。本文的总体结果支持我们的说法,即我们的方法适用于折叠轨迹的原位数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling In-Situ Data Analysis for Large Protein-Folding Trajectory Datasets
This paper presents a one-pass, distributed method that enables in-situ data analysis for large protein folding trajectory datasets by executing sufficiently fast, avoiding moving trajectory data, and limiting the memory usage. First, the method extracts the geometric shape features of each protein conformation in parallel. Then, it classifies sets of consecutive conformations into meta-stable and transition stages using a probabilistic hierarchical clustering method. Lastly, it rebuilds the global knowledge necessary for the intraand inter-trajectory analysis through a reduction operation. The comparison of our method with a traditional approach for a villin headpiece sub domain shows that our method generates significant improvements in execution time, memory usage, and data movement. Specifically, to analyze the same trajectory consisting of 20,000 protein conformations, our method runs in 41.5 seconds while the traditional approach takes approximately 3 hours, uses 6.9MB memory per core while the traditional method uses 16GB on one single node where the analysis is performed, and communicates only 4.4KB while the traditional method moves the entire dataset of 539MB. The overall results in this paper support our claim that our method is suitable for in-situ data analysis of folding trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信