基于异常检测和因果图的反事实根本原因分析

Josephine Rehak, Anouk Sommer, Maximilian Becker, Julius Pfrommer, J. Beyerer
{"title":"基于异常检测和因果图的反事实根本原因分析","authors":"Josephine Rehak, Anouk Sommer, Maximilian Becker, Julius Pfrommer, J. Beyerer","doi":"10.1109/INDIN51400.2023.10218245","DOIUrl":null,"url":null,"abstract":"Anomalies in production processes can cause expensive standstills, damages to the production equipment, waste of materials and flaws in the final product. In production, finding anomalies is usually accomplished by machine learning methods. But to avert anomalies and to automatically recover, actually the detection of the root causes is required. We developed an approach that detects anomalies and then deduces root causes by combining an anomaly detector with a novel Root Cause Analysis (RCA) method based on a causal graph. This specific combination of methods allows causally justified, explainable and counterfactual RCA. The developed algorithm was applied to a simulated gripping process using robotic arms. It found the two root causes of the detected anomalies in the simulated scenarios.","PeriodicalId":174443,"journal":{"name":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterfactual Root Cause Analysis via Anomaly Detection and Causal Graphs\",\"authors\":\"Josephine Rehak, Anouk Sommer, Maximilian Becker, Julius Pfrommer, J. Beyerer\",\"doi\":\"10.1109/INDIN51400.2023.10218245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomalies in production processes can cause expensive standstills, damages to the production equipment, waste of materials and flaws in the final product. In production, finding anomalies is usually accomplished by machine learning methods. But to avert anomalies and to automatically recover, actually the detection of the root causes is required. We developed an approach that detects anomalies and then deduces root causes by combining an anomaly detector with a novel Root Cause Analysis (RCA) method based on a causal graph. This specific combination of methods allows causally justified, explainable and counterfactual RCA. The developed algorithm was applied to a simulated gripping process using robotic arms. It found the two root causes of the detected anomalies in the simulated scenarios.\",\"PeriodicalId\":174443,\"journal\":{\"name\":\"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51400.2023.10218245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51400.2023.10218245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生产过程中的异常会导致昂贵的停工、生产设备的损坏、材料的浪费和最终产品的缺陷。在生产中,发现异常通常是通过机器学习方法完成的。但要避免异常并自动恢复,实际上需要检测根本原因。我们开发了一种方法,通过将异常检测器与基于因果图的新型根本原因分析(RCA)方法相结合,检测异常,然后推断根本原因。这种特定的方法组合允许因果证明、可解释和反事实的RCA。将所开发的算法应用于机械臂抓取过程的仿真。它发现了在模拟场景中检测到异常的两个根本原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterfactual Root Cause Analysis via Anomaly Detection and Causal Graphs
Anomalies in production processes can cause expensive standstills, damages to the production equipment, waste of materials and flaws in the final product. In production, finding anomalies is usually accomplished by machine learning methods. But to avert anomalies and to automatically recover, actually the detection of the root causes is required. We developed an approach that detects anomalies and then deduces root causes by combining an anomaly detector with a novel Root Cause Analysis (RCA) method based on a causal graph. This specific combination of methods allows causally justified, explainable and counterfactual RCA. The developed algorithm was applied to a simulated gripping process using robotic arms. It found the two root causes of the detected anomalies in the simulated scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信