深入情感:理解微调cnn的视觉情感预测

Víctor Campos, Amaia Salvador, Xavier Giró-i-Nieto, Brendan Jou
{"title":"深入情感:理解微调cnn的视觉情感预测","authors":"Víctor Campos, Amaia Salvador, Xavier Giró-i-Nieto, Brendan Jou","doi":"10.1145/2813524.2813530","DOIUrl":null,"url":null,"abstract":"Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.","PeriodicalId":197562,"journal":{"name":"Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction\",\"authors\":\"Víctor Campos, Amaia Salvador, Xavier Giró-i-Nieto, Brendan Jou\",\"doi\":\"10.1145/2813524.2813530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.\",\"PeriodicalId\":197562,\"journal\":{\"name\":\"Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2813524.2813530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813524.2813530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

视觉媒体是表达情感和情感的有力手段。社交网络中不断产生的新内容凸显了对自动视觉情感分析工具的需求。虽然卷积神经网络(cnn)已经在一些视觉问题上建立了新的技术,但它们在情感分析任务中的应用大多未被探索,关于如何为此目的设计cnn的研究也很少。在这项工作中,我们研究了微调CNN用于视觉情绪预测的适用性,并探索了在这种深度学习设置下的性能提升技术。最后,我们对一个基准的、最先进的网络架构进行了深入分析,以深入了解如何在视觉情感预测任务上为cnn设计模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction
Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信