基于MediaPipe的智能手机单目手部跟踪及其在机器人技术中的应用

S. Sreenath, D. Daniels, Apparaju S. D. Ganesh, Yashaswi S. Kuruganti, Rajeevlochana G. Chittawadigi
{"title":"基于MediaPipe的智能手机单目手部跟踪及其在机器人技术中的应用","authors":"S. Sreenath, D. Daniels, Apparaju S. D. Ganesh, Yashaswi S. Kuruganti, Rajeevlochana G. Chittawadigi","doi":"10.1109/R10-HTC53172.2021.9641542","DOIUrl":null,"url":null,"abstract":"With Industry 4.0, robots are finding their way into the production lines of multiple industries. The conventional methods to program these robots require special training, help from a robot technician, or have a basic understanding of robot kinematics. Integration of machine learning into robotics can make the programming process shorter, cost-effective and user friendly. In this paper, we propose to use a customizable machine learning solution of ‘Google MediaPipe Hands' to track human hands from a monocular camera of a smartphone and use it for robotic applications. MediaPipe Hands provides only a 2.5D pose estimation; we propose to use a simple calibration and the concept of perspective projection to get the 3D position of the hands relative to the smartphone. By conducting multiple experiments, we found that the hand tracking solution has satisfactory accuracy rates. We developed robot simulations in Python to check the viability of the hand tracker for robotic applications. We could accurately control the end-effector movement using the hand tracker.","PeriodicalId":117626,"journal":{"name":"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Monocular Tracking of Human Hand on a Smart Phone Camera using MediaPipe and its Application in Robotics\",\"authors\":\"S. Sreenath, D. Daniels, Apparaju S. D. Ganesh, Yashaswi S. Kuruganti, Rajeevlochana G. Chittawadigi\",\"doi\":\"10.1109/R10-HTC53172.2021.9641542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With Industry 4.0, robots are finding their way into the production lines of multiple industries. The conventional methods to program these robots require special training, help from a robot technician, or have a basic understanding of robot kinematics. Integration of machine learning into robotics can make the programming process shorter, cost-effective and user friendly. In this paper, we propose to use a customizable machine learning solution of ‘Google MediaPipe Hands' to track human hands from a monocular camera of a smartphone and use it for robotic applications. MediaPipe Hands provides only a 2.5D pose estimation; we propose to use a simple calibration and the concept of perspective projection to get the 3D position of the hands relative to the smartphone. By conducting multiple experiments, we found that the hand tracking solution has satisfactory accuracy rates. We developed robot simulations in Python to check the viability of the hand tracker for robotic applications. We could accurately control the end-effector movement using the hand tracker.\",\"PeriodicalId\":117626,\"journal\":{\"name\":\"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/R10-HTC53172.2021.9641542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC53172.2021.9641542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着工业4.0的到来,机器人正在进入多个行业的生产线。对这些机器人编程的传统方法需要特殊的培训,机器人技术人员的帮助,或者对机器人运动学有基本的了解。将机器学习集成到机器人中可以使编程过程更短,成本效益更高,用户友好。在本文中,我们建议使用“Google MediaPipe Hands”的可定制机器学习解决方案,从智能手机的单目摄像头跟踪人手,并将其用于机器人应用。MediaPipe Hands只提供2.5D姿态估计;我们建议使用简单的校准和透视投影的概念来获得手相对于智能手机的3D位置。通过多次实验,我们发现该手部跟踪方案具有令人满意的准确率。我们在Python中开发了机器人模拟,以检查手跟踪器在机器人应用中的可行性。我们可以使用手部跟踪器精确地控制末端执行器的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular Tracking of Human Hand on a Smart Phone Camera using MediaPipe and its Application in Robotics
With Industry 4.0, robots are finding their way into the production lines of multiple industries. The conventional methods to program these robots require special training, help from a robot technician, or have a basic understanding of robot kinematics. Integration of machine learning into robotics can make the programming process shorter, cost-effective and user friendly. In this paper, we propose to use a customizable machine learning solution of ‘Google MediaPipe Hands' to track human hands from a monocular camera of a smartphone and use it for robotic applications. MediaPipe Hands provides only a 2.5D pose estimation; we propose to use a simple calibration and the concept of perspective projection to get the 3D position of the hands relative to the smartphone. By conducting multiple experiments, we found that the hand tracking solution has satisfactory accuracy rates. We developed robot simulations in Python to check the viability of the hand tracker for robotic applications. We could accurately control the end-effector movement using the hand tracker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信