基于信息理论技术的同步消息传递模型的新结果

Rahul Jain, H. Klauck
{"title":"基于信息理论技术的同步消息传递模型的新结果","authors":"Rahul Jain, H. Klauck","doi":"10.1109/CCC.2009.28","DOIUrl":null,"url":null,"abstract":"Consider the following {\\em Simultaneous Message Passing} ($\\smp$) model for computing a relation $f \\subseteq \\cX \\times \\cY \\times \\cZ$. In this model $\\alice$, on input $x \\in \\cX$ and $\\bob$, on input $y\\in\\cY$, send one message each to a third party $\\referee$ who then outputs a $z \\in \\cZ$ such that $(x,y,z)\\in f$. We first show optimal {\\em Direct sum} results for all relations $f$ in this model, both in the quantum and classical settings, in the situation where we allow shared resources (shared entanglement in quantum protocols and public coins in classical protocols) between $\\alice$ and $\\referee$ and $\\bob$ and $\\referee$ and no shared resource between $\\alice$ and $\\bob$. This implies that, in this model, the communication required to compute $k$ simultaneous instances of $f$, with constant success overall, is at least $k$-times the communication required to compute one instance with constant success. This in particular implies an earlier Direct sum result, shown by Chakrabarti, Shi, Wirth and Yao~\\cite{ChakrabartiSWY01} for the Equality function (and a class of other so-called robust functions), in the classical $\\smp$ model with no shared resources between any parties. Furthermore we investigate the gap between the $\\smp$ model and the one-way model in communication complexity and exhibit a partial function that is exponentially more expensive in the former if quantum communication with entanglement is allowed, compared to the latter even in the deterministic case.","PeriodicalId":158572,"journal":{"name":"2009 24th Annual IEEE Conference on Computational Complexity","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"New Results in the Simultaneous Message Passing Model via Information Theoretic Techniques\",\"authors\":\"Rahul Jain, H. Klauck\",\"doi\":\"10.1109/CCC.2009.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the following {\\\\em Simultaneous Message Passing} ($\\\\smp$) model for computing a relation $f \\\\subseteq \\\\cX \\\\times \\\\cY \\\\times \\\\cZ$. In this model $\\\\alice$, on input $x \\\\in \\\\cX$ and $\\\\bob$, on input $y\\\\in\\\\cY$, send one message each to a third party $\\\\referee$ who then outputs a $z \\\\in \\\\cZ$ such that $(x,y,z)\\\\in f$. We first show optimal {\\\\em Direct sum} results for all relations $f$ in this model, both in the quantum and classical settings, in the situation where we allow shared resources (shared entanglement in quantum protocols and public coins in classical protocols) between $\\\\alice$ and $\\\\referee$ and $\\\\bob$ and $\\\\referee$ and no shared resource between $\\\\alice$ and $\\\\bob$. This implies that, in this model, the communication required to compute $k$ simultaneous instances of $f$, with constant success overall, is at least $k$-times the communication required to compute one instance with constant success. This in particular implies an earlier Direct sum result, shown by Chakrabarti, Shi, Wirth and Yao~\\\\cite{ChakrabartiSWY01} for the Equality function (and a class of other so-called robust functions), in the classical $\\\\smp$ model with no shared resources between any parties. Furthermore we investigate the gap between the $\\\\smp$ model and the one-way model in communication complexity and exhibit a partial function that is exponentially more expensive in the former if quantum communication with entanglement is allowed, compared to the latter even in the deterministic case.\",\"PeriodicalId\":158572,\"journal\":{\"name\":\"2009 24th Annual IEEE Conference on Computational Complexity\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 24th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2009.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2009.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

考虑以下几点 {\em 同时消息传递} ($\smp$计算关系的模型 $f \subseteq \cX \times \cY \times \cZ$. 在这个模型中 $\alice$,输入 $x \in \cX$ 和 $\bob$,输入 $y\in\cY$,每人向第三方发送一条消息 $\referee$ 然后输出a $z \in \cZ$ 这样 $(x,y,z)\in f$. 我们首先展示最优 {\em 直和} 所有关系的结果 $f$ 在这个模型中,在量子和经典设置中,在我们允许共享资源(量子协议中的共享纠缠和经典协议中的公共硬币)的情况下 $\alice$ 和 $\referee$ 和 $\bob$ 和 $\referee$ 没有共享资源 $\alice$ 和 $\bob$. 这意味着,在这个模型中,通信需要进行计算 $k$ 的同时实例 $f$总体上持续的成功,至少是 $k$-乘以计算一个实例并持续成功所需的通信。这特别暗示了一个更早的直接和结果,由Chakrabarti, Shi, Wirth和Yao展示 \cite{ChakrabartiSWY01} 对于等式函数(以及一类其他所谓的鲁棒函数),在经典中 $\smp$ 在任何参与方之间没有共享资源的模型。此外,我们研究了两者之间的差距 $\smp$ 模型和单向模型的通信复杂性,并且在允许量子纠缠通信的情况下,与后者相比,即使在确定性情况下,前者也表现出指数级的昂贵的部分函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Results in the Simultaneous Message Passing Model via Information Theoretic Techniques
Consider the following {\em Simultaneous Message Passing} ($\smp$) model for computing a relation $f \subseteq \cX \times \cY \times \cZ$. In this model $\alice$, on input $x \in \cX$ and $\bob$, on input $y\in\cY$, send one message each to a third party $\referee$ who then outputs a $z \in \cZ$ such that $(x,y,z)\in f$. We first show optimal {\em Direct sum} results for all relations $f$ in this model, both in the quantum and classical settings, in the situation where we allow shared resources (shared entanglement in quantum protocols and public coins in classical protocols) between $\alice$ and $\referee$ and $\bob$ and $\referee$ and no shared resource between $\alice$ and $\bob$. This implies that, in this model, the communication required to compute $k$ simultaneous instances of $f$, with constant success overall, is at least $k$-times the communication required to compute one instance with constant success. This in particular implies an earlier Direct sum result, shown by Chakrabarti, Shi, Wirth and Yao~\cite{ChakrabartiSWY01} for the Equality function (and a class of other so-called robust functions), in the classical $\smp$ model with no shared resources between any parties. Furthermore we investigate the gap between the $\smp$ model and the one-way model in communication complexity and exhibit a partial function that is exponentially more expensive in the former if quantum communication with entanglement is allowed, compared to the latter even in the deterministic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信