流并行计算中的能量驱动自适应

M. Danelutto, D. D. Sensi, M. Torquati
{"title":"流并行计算中的能量驱动自适应","authors":"M. Danelutto, D. D. Sensi, M. Torquati","doi":"10.1109/PDP.2015.92","DOIUrl":null,"url":null,"abstract":"Determining the right amount of resources needed for a given computation is a critical problem. In many cases, computing systems are configured to use an amount of resources to manage high load peaks even though this cause energy waste when the resources are not fully utilised. To avoid this problem, adaptive approaches are used to dynamically increase/decrease computational resources depending on the real needs. A different approach based on Dynamic Voltage and Frequency Scaling (DVFS) is emerging as a possible alternative solution to reduce energy consumption of idle CPUs by lowering their frequencies. In this work, we propose to tackle the problem in stream parallel computations by using both the classic adaptivity concepts and the possibility provided by modern CPUs to dynamically change their frequency. We validate our approach showing a real network application that performs Deep Packet Inspection over network traffic. We are able to manage bandwidth changing over time, guaranteeing minimal packet loss during reconfiguration and minimal energy consumption.","PeriodicalId":285111,"journal":{"name":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Energy Driven Adaptivity in Stream Parallel Computations\",\"authors\":\"M. Danelutto, D. D. Sensi, M. Torquati\",\"doi\":\"10.1109/PDP.2015.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the right amount of resources needed for a given computation is a critical problem. In many cases, computing systems are configured to use an amount of resources to manage high load peaks even though this cause energy waste when the resources are not fully utilised. To avoid this problem, adaptive approaches are used to dynamically increase/decrease computational resources depending on the real needs. A different approach based on Dynamic Voltage and Frequency Scaling (DVFS) is emerging as a possible alternative solution to reduce energy consumption of idle CPUs by lowering their frequencies. In this work, we propose to tackle the problem in stream parallel computations by using both the classic adaptivity concepts and the possibility provided by modern CPUs to dynamically change their frequency. We validate our approach showing a real network application that performs Deep Packet Inspection over network traffic. We are able to manage bandwidth changing over time, guaranteeing minimal packet loss during reconfiguration and minimal energy consumption.\",\"PeriodicalId\":285111,\"journal\":{\"name\":\"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2015.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2015.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

确定给定计算所需的适当资源量是一个关键问题。在许多情况下,计算系统被配置为使用大量资源来管理高负载峰值,即使当资源没有得到充分利用时,这会导致能源浪费。为了避免这个问题,采用自适应方法根据实际需要动态地增加/减少计算资源。一种基于动态电压和频率缩放(DVFS)的不同方法正在成为一种可能的替代解决方案,通过降低空闲cpu的频率来减少其能耗。在这项工作中,我们建议通过使用经典的自适应概念和现代cpu提供的动态改变其频率的可能性来解决流并行计算中的问题。我们验证了我们的方法,展示了一个真实的网络应用程序,该应用程序对网络流量执行深度数据包检测。我们能够管理带宽随时间的变化,保证在重新配置过程中最小的数据包丢失和最小的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Driven Adaptivity in Stream Parallel Computations
Determining the right amount of resources needed for a given computation is a critical problem. In many cases, computing systems are configured to use an amount of resources to manage high load peaks even though this cause energy waste when the resources are not fully utilised. To avoid this problem, adaptive approaches are used to dynamically increase/decrease computational resources depending on the real needs. A different approach based on Dynamic Voltage and Frequency Scaling (DVFS) is emerging as a possible alternative solution to reduce energy consumption of idle CPUs by lowering their frequencies. In this work, we propose to tackle the problem in stream parallel computations by using both the classic adaptivity concepts and the possibility provided by modern CPUs to dynamically change their frequency. We validate our approach showing a real network application that performs Deep Packet Inspection over network traffic. We are able to manage bandwidth changing over time, guaranteeing minimal packet loss during reconfiguration and minimal energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信