论平衡平面图,继W. Thurston之后

Sarah C. Koch, Tan Lei
{"title":"论平衡平面图,继W. Thurston之后","authors":"Sarah C. Koch, Tan Lei","doi":"10.2307/j.ctvthhdvv.12","DOIUrl":null,"url":null,"abstract":"Let f : S 2 → S 2 be an orientation-preserving branched covering map of degree d ≥ 2, and let Σ be an oriented Jordan curve passing through the critical values of f . Then Γ := f −1 (Σ) is an oriented graph on the sphere. In a group email discussion in Fall 2010, W. Thurston introduced balanced planar graphs and showed that they combinatorially characterize all such Γ, where f has 2d−2 distinct critical values. We give a detailed account of this discussion, along with some examples and an appendix about Hurwitz numbers.","PeriodicalId":404905,"journal":{"name":"What's Next?","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Balanced Planar Graphs, Following W. Thurston\",\"authors\":\"Sarah C. Koch, Tan Lei\",\"doi\":\"10.2307/j.ctvthhdvv.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f : S 2 → S 2 be an orientation-preserving branched covering map of degree d ≥ 2, and let Σ be an oriented Jordan curve passing through the critical values of f . Then Γ := f −1 (Σ) is an oriented graph on the sphere. In a group email discussion in Fall 2010, W. Thurston introduced balanced planar graphs and showed that they combinatorially characterize all such Γ, where f has 2d−2 distinct critical values. We give a detailed account of this discussion, along with some examples and an appendix about Hurwitz numbers.\",\"PeriodicalId\":404905,\"journal\":{\"name\":\"What's Next?\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"What's Next?\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvthhdvv.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"What's Next?","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvthhdvv.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设f: s2→s2为度d≥2的保向分支覆盖图,设Σ为经过f临界值的有向约当曲线。则Γ:= f−1 (Σ)是球面上的有向图。在2010年秋天的一组电子邮件讨论中,W. Thurston引入了平衡平面图,并表明它们组合表征了所有这些Γ,其中f具有2d−2个不同的临界值。我们给出了这个讨论的详细说明,以及一些例子和关于赫尔维茨数的附录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Balanced Planar Graphs, Following W. Thurston
Let f : S 2 → S 2 be an orientation-preserving branched covering map of degree d ≥ 2, and let Σ be an oriented Jordan curve passing through the critical values of f . Then Γ := f −1 (Σ) is an oriented graph on the sphere. In a group email discussion in Fall 2010, W. Thurston introduced balanced planar graphs and showed that they combinatorially characterize all such Γ, where f has 2d−2 distinct critical values. We give a detailed account of this discussion, along with some examples and an appendix about Hurwitz numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信