EIT的医疗信息物理系统活动:透视内幕

Daniel Sonntag, S. Zillner, S. Chakraborty, András Lörincz, E. Strömmer, L. Serafini
{"title":"EIT的医疗信息物理系统活动:透视内幕","authors":"Daniel Sonntag, S. Zillner, S. Chakraborty, András Lörincz, E. Strömmer, L. Serafini","doi":"10.1109/CBMS.2014.83","DOIUrl":null,"url":null,"abstract":"In this paper, we describe how we combine active and passive user input modes in clinical environments for knowledge discovery and knowledge acquisition towards decision support in clinical environments. Active input modes include digital pens, smartphones, and automatic handwriting recognition for a direct digitalisation of patient data. Passive input modes include sensors of the clinical environment and or mobile smartphones. This combination for knowledge acquisition and decision support (while using machine learning techniques) has not yet been explored in clinical environments and is of specific interest because it combines previously unconnected information sources for individualised treatments. The innovative aspect is a holistic view on individual patients based on ontologies, terminologies, and textual patient records whereby individual active and passive real-time patient data can be taken into account for improving clinical decision support.","PeriodicalId":398710,"journal":{"name":"2014 IEEE 27th International Symposium on Computer-Based Medical Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The Medical Cyber-physical Systems Activity at EIT: A Look under the Hood\",\"authors\":\"Daniel Sonntag, S. Zillner, S. Chakraborty, András Lörincz, E. Strömmer, L. Serafini\",\"doi\":\"10.1109/CBMS.2014.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe how we combine active and passive user input modes in clinical environments for knowledge discovery and knowledge acquisition towards decision support in clinical environments. Active input modes include digital pens, smartphones, and automatic handwriting recognition for a direct digitalisation of patient data. Passive input modes include sensors of the clinical environment and or mobile smartphones. This combination for knowledge acquisition and decision support (while using machine learning techniques) has not yet been explored in clinical environments and is of specific interest because it combines previously unconnected information sources for individualised treatments. The innovative aspect is a holistic view on individual patients based on ontologies, terminologies, and textual patient records whereby individual active and passive real-time patient data can be taken into account for improving clinical decision support.\",\"PeriodicalId\":398710,\"journal\":{\"name\":\"2014 IEEE 27th International Symposium on Computer-Based Medical Systems\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 27th International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2014.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2014.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们描述了如何将临床环境中的主动和被动用户输入模式结合起来,用于知识发现和知识获取,以支持临床环境中的决策。主动输入模式包括数字笔、智能手机和用于直接数字化患者数据的自动手写识别。被动输入模式包括临床环境传感器和/或移动智能手机。这种知识获取和决策支持的结合(同时使用机器学习技术)尚未在临床环境中进行探索,并且特别感兴趣,因为它将以前不相关的信息源用于个性化治疗。创新的方面是基于本体、术语和文本患者记录的个体患者的整体视图,从而可以考虑个体主动和被动的实时患者数据,以改善临床决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Medical Cyber-physical Systems Activity at EIT: A Look under the Hood
In this paper, we describe how we combine active and passive user input modes in clinical environments for knowledge discovery and knowledge acquisition towards decision support in clinical environments. Active input modes include digital pens, smartphones, and automatic handwriting recognition for a direct digitalisation of patient data. Passive input modes include sensors of the clinical environment and or mobile smartphones. This combination for knowledge acquisition and decision support (while using machine learning techniques) has not yet been explored in clinical environments and is of specific interest because it combines previously unconnected information sources for individualised treatments. The innovative aspect is a holistic view on individual patients based on ontologies, terminologies, and textual patient records whereby individual active and passive real-time patient data can be taken into account for improving clinical decision support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信