Subquadratic 0知识

J. Boyar, G. Brassard, R. Peralta
{"title":"Subquadratic 0知识","authors":"J. Boyar, G. Brassard, R. Peralta","doi":"10.1145/227683.227686","DOIUrl":null,"url":null,"abstract":"The communication complexity of zero-knowledge proof systems is improved. Let C be a Boolean circuit of size n. Previous zero-knowledge proof systems for the satisfiability of C require the use of Omega (kn) bit commitments in order to achieve a probability of undetected cheating not greater than 2/sup -k/. In the case k=n, the communication complexity of these protocols is therefore Omega (n/sup 2/) bit commitments. A zero-knowledge proof is given for achieving the same goal with only O(n/sup m/+k square root n/sup m/) bit commitments, where m=1+ epsilon /sub n/ and epsilon /sub n/ goes to zero as n goes to infinity. In the case k=n, this is O(n square root n/sup m/). Moreover, only O(k) commitments need ever be opened, which is interesting if committing to a bit is significantly less expensive than opening a commitment.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Subquadratic zero-knowledge\",\"authors\":\"J. Boyar, G. Brassard, R. Peralta\",\"doi\":\"10.1145/227683.227686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The communication complexity of zero-knowledge proof systems is improved. Let C be a Boolean circuit of size n. Previous zero-knowledge proof systems for the satisfiability of C require the use of Omega (kn) bit commitments in order to achieve a probability of undetected cheating not greater than 2/sup -k/. In the case k=n, the communication complexity of these protocols is therefore Omega (n/sup 2/) bit commitments. A zero-knowledge proof is given for achieving the same goal with only O(n/sup m/+k square root n/sup m/) bit commitments, where m=1+ epsilon /sub n/ and epsilon /sub n/ goes to zero as n goes to infinity. In the case k=n, this is O(n square root n/sup m/). Moreover, only O(k) commitments need ever be opened, which is interesting if committing to a bit is significantly less expensive than opening a commitment.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/227683.227686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/227683.227686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

提高了零知识证明系统的通信复杂度。设C为大小为n的布尔电路。以前的零知识证明系统对于C的可满足性要求使用Omega (kn)位承诺,以实现未被发现的作弊概率不大于2/sup -k/。在k=n的情况下,这些协议的通信复杂性因此是Omega (n/sup 2/)位承诺。给出了一个零知识证明,可以只用O(n/sup m/+k根号n/sup m/)位来实现相同的目标,其中m=1+ epsilon /下标n/和epsilon /下标n/在n趋于无穷时趋于零。在k=n的情况下,这是O(n√n/sup m/)此外,只需要打开O(k)个承诺,如果提交一个比特比打开一个承诺要便宜得多,这是很有趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subquadratic zero-knowledge
The communication complexity of zero-knowledge proof systems is improved. Let C be a Boolean circuit of size n. Previous zero-knowledge proof systems for the satisfiability of C require the use of Omega (kn) bit commitments in order to achieve a probability of undetected cheating not greater than 2/sup -k/. In the case k=n, the communication complexity of these protocols is therefore Omega (n/sup 2/) bit commitments. A zero-knowledge proof is given for achieving the same goal with only O(n/sup m/+k square root n/sup m/) bit commitments, where m=1+ epsilon /sub n/ and epsilon /sub n/ goes to zero as n goes to infinity. In the case k=n, this is O(n square root n/sup m/). Moreover, only O(k) commitments need ever be opened, which is interesting if committing to a bit is significantly less expensive than opening a commitment.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信