朴素贝叶斯分类器对连续变量使用了新颖的方法(NBC4D)和分布

P. Yıldırım, Derya Birant
{"title":"朴素贝叶斯分类器对连续变量使用了新颖的方法(NBC4D)和分布","authors":"P. Yıldırım, Derya Birant","doi":"10.1109/INISTA.2014.6873605","DOIUrl":null,"url":null,"abstract":"In data mining, when using Naive Bayes classification technique, it is necessary to overcome the problem of how to deal with continuous attributes. Most previous work has solved the problem either by using discretization, normal method or kernel method. This study proposes the usage of different continuous probability distribution techniques for Naive Bayes classification. It explores various probability density functions of distributions. The experimental results show that the proposed probability distributions also classify continuous data with potentially high accuracy. In addition, this paper introduces a novel method, named NBC4D, which offers a new approach for classification by applying different distribution types on different attributes. The results (obtained classification accuracy rates) show that our proposed method (the usage of more than one distribution types) has success on real-world datasets when compared with the usage of only one well known distribution type.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Naive Bayes classifier for continuous variables using novel method (NBC4D) and distributions\",\"authors\":\"P. Yıldırım, Derya Birant\",\"doi\":\"10.1109/INISTA.2014.6873605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining, when using Naive Bayes classification technique, it is necessary to overcome the problem of how to deal with continuous attributes. Most previous work has solved the problem either by using discretization, normal method or kernel method. This study proposes the usage of different continuous probability distribution techniques for Naive Bayes classification. It explores various probability density functions of distributions. The experimental results show that the proposed probability distributions also classify continuous data with potentially high accuracy. In addition, this paper introduces a novel method, named NBC4D, which offers a new approach for classification by applying different distribution types on different attributes. The results (obtained classification accuracy rates) show that our proposed method (the usage of more than one distribution types) has success on real-world datasets when compared with the usage of only one well known distribution type.\",\"PeriodicalId\":339652,\"journal\":{\"name\":\"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2014.6873605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在数据挖掘中,使用朴素贝叶斯分类技术时,必须克服如何处理连续属性的问题。以往的研究大多采用离散化、正态法或核方法来解决问题。本研究提出使用不同的连续概率分布技术进行朴素贝叶斯分类。它探讨了分布的各种概率密度函数。实验结果表明,所提出的概率分布对连续数据的分类具有较高的精度。此外,本文还介绍了一种新的方法NBC4D,该方法通过对不同的属性应用不同的分布类型,提供了一种新的分类方法。结果(获得的分类准确率)表明,与仅使用一种已知分布类型相比,我们提出的方法(使用多种分布类型)在真实数据集上取得了成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naive Bayes classifier for continuous variables using novel method (NBC4D) and distributions
In data mining, when using Naive Bayes classification technique, it is necessary to overcome the problem of how to deal with continuous attributes. Most previous work has solved the problem either by using discretization, normal method or kernel method. This study proposes the usage of different continuous probability distribution techniques for Naive Bayes classification. It explores various probability density functions of distributions. The experimental results show that the proposed probability distributions also classify continuous data with potentially high accuracy. In addition, this paper introduces a novel method, named NBC4D, which offers a new approach for classification by applying different distribution types on different attributes. The results (obtained classification accuracy rates) show that our proposed method (the usage of more than one distribution types) has success on real-world datasets when compared with the usage of only one well known distribution type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信