基于单峰数据融合的低分辨率人脸识别

O. E. Meslouhi, M. Benaddy, B. E. Habil, M. E. Ouali, S. Krit, Zineb El Garrai, Khalid Nassiri
{"title":"基于单峰数据融合的低分辨率人脸识别","authors":"O. E. Meslouhi, M. Benaddy, B. E. Habil, M. E. Ouali, S. Krit, Zineb El Garrai, Khalid Nassiri","doi":"10.1109/ICEMIS.2017.8273086","DOIUrl":null,"url":null,"abstract":"The objective of low-resolution face recognition is to identify faces in an uncontrolled situations like from small size or poor quality images with varying pose, illumination, expression, etc. Most existing approaches use features of just one type. In this work, we propose a robust low face recognition technique based on unimodal features fusion, which is more discriminative than using only one feature modality. Features of each facial image are extracted using three steps: i) both Gabor filters and Histogram of Oriented Gradients (HOG) descriptor are calculated. ii) the size of these features is reduced using the Linear Discriminant Analysis (LDA) method in order to remove redundant information. iii) the reduced features are combined using Discriminant Correlation Analysis (DCA) method. To achieve the recognition task, a Support Vectors Machine Classifier, is used. Performance of the proposed method will be measured using the AR database.","PeriodicalId":117908,"journal":{"name":"2017 International Conference on Engineering & MIS (ICEMIS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-resolution face recognition using unimodal data fusion\",\"authors\":\"O. E. Meslouhi, M. Benaddy, B. E. Habil, M. E. Ouali, S. Krit, Zineb El Garrai, Khalid Nassiri\",\"doi\":\"10.1109/ICEMIS.2017.8273086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of low-resolution face recognition is to identify faces in an uncontrolled situations like from small size or poor quality images with varying pose, illumination, expression, etc. Most existing approaches use features of just one type. In this work, we propose a robust low face recognition technique based on unimodal features fusion, which is more discriminative than using only one feature modality. Features of each facial image are extracted using three steps: i) both Gabor filters and Histogram of Oriented Gradients (HOG) descriptor are calculated. ii) the size of these features is reduced using the Linear Discriminant Analysis (LDA) method in order to remove redundant information. iii) the reduced features are combined using Discriminant Correlation Analysis (DCA) method. To achieve the recognition task, a Support Vectors Machine Classifier, is used. Performance of the proposed method will be measured using the AR database.\",\"PeriodicalId\":117908,\"journal\":{\"name\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMIS.2017.8273086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS.2017.8273086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

低分辨率人脸识别的目标是在不受控制的情况下,从小尺寸或低质量的图像中识别人脸,这些图像具有不同的姿势、光照、表情等。大多数现有的方法只使用一种类型的特性。在这项工作中,我们提出了一种基于单模态特征融合的鲁棒低人脸识别技术,该技术比仅使用一种特征模态更具判别性。每张面部图像的特征提取分为三个步骤:1)计算Gabor滤波器和定向梯度直方图(HOG)描述符。ii)使用线性判别分析(LDA)方法减小这些特征的大小,以去除冗余信息。iii)利用判别相关分析(Discriminant Correlation Analysis, DCA)方法对约简特征进行组合。为了实现识别任务,使用了支持向量机分类器。所提出的方法的性能将使用AR数据库进行测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-resolution face recognition using unimodal data fusion
The objective of low-resolution face recognition is to identify faces in an uncontrolled situations like from small size or poor quality images with varying pose, illumination, expression, etc. Most existing approaches use features of just one type. In this work, we propose a robust low face recognition technique based on unimodal features fusion, which is more discriminative than using only one feature modality. Features of each facial image are extracted using three steps: i) both Gabor filters and Histogram of Oriented Gradients (HOG) descriptor are calculated. ii) the size of these features is reduced using the Linear Discriminant Analysis (LDA) method in order to remove redundant information. iii) the reduced features are combined using Discriminant Correlation Analysis (DCA) method. To achieve the recognition task, a Support Vectors Machine Classifier, is used. Performance of the proposed method will be measured using the AR database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信