KRX的裂缝:当距离越远的点越不异常

J. Theiler, G. Grosklos
{"title":"KRX的裂缝:当距离越远的点越不异常","authors":"J. Theiler, G. Grosklos","doi":"10.1109/WHISPERS.2016.8071717","DOIUrl":null,"url":null,"abstract":"We examine the Mahalanobis-distance based kernel-RX (KRX) algorithm for anomaly detection, and find that it can exhibit an unfortunate phenomenon: the anomalousness, for points far from the training data, can decrease with increasing distance. We demonstrate this directly for a few special cases, and provide a more general argument that applies in the large bandwidth regime.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cracks in KRX: When more distant points are less anomalous\",\"authors\":\"J. Theiler, G. Grosklos\",\"doi\":\"10.1109/WHISPERS.2016.8071717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the Mahalanobis-distance based kernel-RX (KRX) algorithm for anomaly detection, and find that it can exhibit an unfortunate phenomenon: the anomalousness, for points far from the training data, can decrease with increasing distance. We demonstrate this directly for a few special cases, and provide a more general argument that applies in the large bandwidth regime.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了基于Mahalanobis-distance的核rx (KRX)算法用于异常检测,发现它会出现一个不幸的现象:对于远离训练数据的点,异常会随着距离的增加而减少。我们在一些特殊情况下直接演示了这一点,并提供了适用于大带宽制度的更一般的论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cracks in KRX: When more distant points are less anomalous
We examine the Mahalanobis-distance based kernel-RX (KRX) algorithm for anomaly detection, and find that it can exhibit an unfortunate phenomenon: the anomalousness, for points far from the training data, can decrease with increasing distance. We demonstrate this directly for a few special cases, and provide a more general argument that applies in the large bandwidth regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信