基于二维系统理论的奇异线性连续系统迭代学习控制

S. Alaviani
{"title":"基于二维系统理论的奇异线性连续系统迭代学习控制","authors":"S. Alaviani","doi":"10.1109/CCA.2013.6662857","DOIUrl":null,"url":null,"abstract":"This paper presents iterative learning control (ILC) based on two-dimensional (2D) system theory for singular linear continuous-time systems. It is shown that the singular 2D linear continuous-discrete Roesser's model can be applied to describe the ILC process of singular linear continuous-time systems. Necessary and sufficient conditions are given for impulse-free convergence of the proposed ILC rules. Eventually, two numerical examples are given in order to show the results investigated.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Iterative learning control based on 2D system theory for singular linear continuous-time systems\",\"authors\":\"S. Alaviani\",\"doi\":\"10.1109/CCA.2013.6662857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents iterative learning control (ILC) based on two-dimensional (2D) system theory for singular linear continuous-time systems. It is shown that the singular 2D linear continuous-discrete Roesser's model can be applied to describe the ILC process of singular linear continuous-time systems. Necessary and sufficient conditions are given for impulse-free convergence of the proposed ILC rules. Eventually, two numerical examples are given in order to show the results investigated.\",\"PeriodicalId\":379739,\"journal\":{\"name\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2013.6662857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对奇异线性连续系统,提出了基于二维系统理论的迭代学习控制方法。结果表明,奇异二维线性连续离散Roesser模型可用于描述奇异线性连续系统的ILC过程。给出了ILC规则无脉冲收敛的充分必要条件。最后,给出了两个数值算例来说明研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative learning control based on 2D system theory for singular linear continuous-time systems
This paper presents iterative learning control (ILC) based on two-dimensional (2D) system theory for singular linear continuous-time systems. It is shown that the singular 2D linear continuous-discrete Roesser's model can be applied to describe the ILC process of singular linear continuous-time systems. Necessary and sufficient conditions are given for impulse-free convergence of the proposed ILC rules. Eventually, two numerical examples are given in order to show the results investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信